Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2014 | 59 | 2 | 61-66

Article title

Verification of the use of GEANT4 and MCNPX Monte Carlo Codes for Calculations of the Depth-Dose Distributions in Water for the Proton Therapy of Eye Tumours

Content

Title variants

Languages of publication

EN

Abstracts

EN
Verification of calculations of the depth-dose distributions in water, using GEANT4 (version of 4.9.3) and MCNPX (version of 2.7.0) Monte Carlo codes, was performed for the scatterer-phantom system used in the dosimetry measurements in the proton therapy of eye tumours. The simulated primary proton beam had the energy spectra distributed according to the Gauss distribution with the cut at energy greater than that related to the maximum of the spectrum. The energy spectra of the primary protons were chosen to get the possibly best agreement between the measured relative depth-dose distributions along the central-axis of the proton beam in a water phantom and that derived from the Monte Carlo calculations separately for the both tested codes. The local depth-dose differences between results from the calculations and the measurements were mostly less than 5% (the mean value of 2.1% and 3.6% for the MCNPX and GEANT4 calculations). In the case of the MCNPX calculations, the best fit to the experimental data was obtained for the spectrum with maximum at 60.8 MeV (more probable energy), FWHM of the spectrum of 0.4 MeV and the energy cut at 60.85 MeV whereas in the GEANT4 calculations more probable energy was 60.5 MeV, FWHM of 0.5 MeV, the energy cut at 60.7 MeV. Thus, one can say that the results obtained by means of the both considered Monte Carlo codes are similar but they are not the same. Therefore the agreement between the calculations and the measurements has to be verified before each application of the MCNPX and GEANT4 codes for the determination of the depth-dose curves for the therapeutic protons.

Keywords

Publisher

Journal

Year

Volume

59

Issue

2

Pages

61-66

Physical description

Dates

accepted
16 - 4 - 2014
received
26 - 6 - 2013
online
8 - 7 - 2014

Contributors

  • Department of Nuclear Physics and Its Application, Institute of Physics, University of Silesia, 4 Uniwersytecka Str., 40-007 Katowice, Poland, Tel: +48 32 359 1888, Fax: +48 32 258 8431
author
  • Department of Nuclear Physics and Its Application, Institute of Physics, University of Silesia, 4 Uniwersytecka Str., 40-007 Katowice, Poland, Tel: +48 32 359 1888, Fax: +48 32 258 8431
author
  • Department of Nuclear Physics and Its Application, Institute of Physics, University of Silesia, 4 Uniwersytecka Str., 40-007 Katowice, Poland, Tel: +48 32 359 1888, Fax: +48 32 258 8431
  • Department of Nuclear Physics and Its Application, Institute of Physics, University of Silesia, 4 Uniwersytecka Str., 40-007 Katowice, Poland, Tel: +48 32 359 1888, Fax: +48 32 258 8431
  • Department of Nuclear Physics and Its Application, Institute of Physics, University of Silesia, 4 Uniwersytecka Str., 40-007 Katowice, Poland, Tel: +48 32 359 1888, Fax: +48 32 258 8431

References

  • 1. Francis, Z., Incerti, S., Karamitros, M., Tran, H. N., & Villagrasa, C. (2011). Stopping power and ranges of electrons, protons and alpha particles in liquid water using the Geant4-DNA package. Nucl. Instrum. Meth. Phys. Res. B, 269, 2307-2311.
  • 2. Garcia-Molina, R., Abril, I., De Vera, P., & Pau, H. (2013). Comments on recent measurements of the stopping power of liquid water. Nucl. Instrum. Meth. Phys. Res. B, 299, 51-53.
  • 3. Konefał, A., Orlef, A., & Maniakowski, Z. (2010). Influence of the radiation field size and the depth in irradiated medium on energy spectra of the 6 MV X-ray beams from medical linac. Pol. J. Environ. Stud., 1, 115-118.
  • 4. Ottaviano, G., Picardi, L., Pillon, M., Ronsivalle, C., Sandri, S. (2014). The radiation fields around a proton therapy facility: A comparison of Monte Carlo simulations. Rad. Phys. Chem., 95, 236-239.
  • 5. Jia, X., Schümann, J., Paganetti, H., & Jiang, S. B. (2012). GPU-based fast Monte Carlo dose calculation for proton therapy. Phys. Med. Biol., 57(23), 7783-7797.
  • 6. Konefał, A., Szaflik, P., & Zipper, W. (2010). Influence of the energy spectrum and the spatial spread of the proton beams used in the eye tumor treatment on the depth-dose characteristics. Nukleonika, 55(3), 313-316.
  • 7. Cirrone, G. A. P., Cuttone, G., Mazzaglia, S. E., Romano, F., Sardina, D., Agodi, C., Attili, A., Blancato, A. A., De Napoli, M., Di Rosa, F., Kaitaniemi, P., Marchetto, F., Petrovic, I., Ristic-Fira, A., Shin, J., Tarnavsky, N., Tropea, S., & Zacharatou, C. (2011). Hadrontherapy: a Geant4-based tool for proton/ion-therapy studies. Prog. Nucl. Sci. Technol., 2, 207-212.
  • 8. Lee, C. C., Lee, Y. J., Tung, C. J., Cheng, H. W., & Chao, T. C. (2014). MCNPX simulation of photon dose distribution in homogeneous and CT phantoms. Rad. Phys. Chem., 95, 302-304.
  • 9. Sadrozinski, H. F., Johnson, R. P., MacAfee, S., Plumb, A., Steinberg, D., Zatserklyaniy, A., Bashkirov, V. A., Hurley, R. F., & Schulte, R. W. (2013). Development of a head scanner for proton CT. Nucl. Instrum. Meth. Phys. Res. A, 699, 205-210.
  • 10. Titt, U., Bednarz, B., & Paganetti, H. (2012). Comparison of MCNPX and Geant4 proton energy deposition predictions for clinical use. Phys. Med. Biol., 57, 6381-6393.[WoS]
  • 11. Kim, D. H., Suh, T. S., Kang, Y. N., Yoo, S. H., Pae, K. H., Shin, D., & Lee, S. B. (2013). Parametric study of a variable-magnetic-field-based energy-selection system for generating a spread-out Bragg peak with a laser-accelerated proton beam. J. Kor. Phys. Soc., 62(1), 59-66.[WoS]
  • 12. Francis, Z. (2013). Molecular scale simulation of ionizing particles tracks for radiobiology and Hadron-therapy studies. Adv. Quan. Chem., 65, 79-110.[WoS]
  • 13. Konefał, A., Polaczek-Grelik, K., Orlef, A., Maniakowski, Z., & Zipper, W. (2006). Background neutron radiation in the vicinity of Varian Clinac-2300 medical accelerator working in the 20 MV mode. Pol. J. Environ. Stud., 15(4A), 177-180.
  • 14. Candela-Juan, C., Perez-Calatayud, J., Ballester, F., & Rivard, M. J. (2013). Calculated organ doses using Monte Carlo simulations in a reference male phantom undergoing HDR brachytherapy applied to localized prostate carcinoma. Med. Phys., 40(3), art. No. 033901.[WoS][Crossref]
  • 15. Stolarczyk, L., Olko, P., Cywicka-Jakiel, T., Ptaszkiewicz, M., Swakoń, J., Dulny, B., Horwacik, T., Obryk, B., & Wa-ligórski, M. P. R. (2010). Assessment of undesirable dose to eye-melanoma patients after proton radiotherapy. Radiat. Meas., 45, 1441-1444.[WoS]
  • 16. Nikezic, D., Haque, A. K. M. M., & Yu, K. N. (2002). Absorbed dose delivered by alpha particles calculated in cylindrical geometry. J. Environ. Radioact., 60, 293-305.
  • 17. Besemer, A., Paganetti, H., & Bednarz. B. (2013). The clinical impact of uncertainties in the mean excitation energy of human tissue during proton therapy. Phys. Med. Biol., 58(4), 887-902.[Crossref]
  • 18. Cywicka-Jakiel, T., Stolarczyk, L., Swakoń, J., Olko, P., & Waligórski, M. P. R. (2010). Individual patient shielding for a proton eye therapy facility. Radiat. Meas., 45, 1127-1129.[WoS]
  • 19. Swakoń, J., Olko, P., Adamczyk, D., Cywicka-Jakiel, T., Dabrowska, J., Dulny, B., Grzanka, L., Horwacik, T., Kajdrowicz, T., Michalec, B., Nowaka, T., Ptaszkiewicz, M., Sowa, U., Stolarczyk, L., Waligorski, M. P. R. (2010). Facility for proton radiotherapy of eye cancer at IFJ PAN in Krakow. Radiat. Meas., 45, 1469-1471.
  • 20. Physics Reference Manual, May 2007.
  • 21. International Atomic Energy Agency. (2000). Absorbed dose determination in external beam radiotherapy: An international code of practice for dosimetry based on standards of absorbed dose to water. Vienna: IAEA. (TRS-398).
  • 22. MCNPX User's Manual, April 2002.
  • 23. Park, Y. S., Kim, J. H., Hong, G. B., Jung, I. S., & Yang, T. K. (2011). Proton beam energy determination using a device for range measurement of an accelerated high energy ion beam. J. Kor. Phys. Soc., 59(22), 679-685.[WoS]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_nuka-2014-0007
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.