Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2014 | 59 | 1 | 25-35

Article title

Caffeine degradation in water by gamma irradiation, ozonation and ozonation/gamma irradiation


Title variants

Languages of publication



Aqueous solutions of caffeine were treated with ozone and gamma irradiation. The amounts of remaining caffeine were determined after solid phase extraction as a function of absorbed dose and ozonation time. In addition to this, some important parameters such as inorganic ions, chemical oxygen demand (COD) dissolved oxygen and total acidity changes were followed. Caffeine (50 ppm) is found to be completely decomposed at 3.0 kGy and 1.2 kGy doses in the absence of H2O2 and in 1.20 mM H2O2 solutions, respectively. In the case of gamma irradiation after ozonation, 50 ppm caffeine was removed at 0.2 kGy when the solution was ozonized for 100 s at a rate of 10 g O3 h-1 in 400 mL 50 ppm paracetamol solution.










Physical description


1 - 03 - 2014
25 - 03 - 2014


  • Department of Chemistry, Hacettepe University, 06800 Beytepe, Ankara, Turkey, Tel.: +90 312 297 7988, Fax: +90 312 299 2163
  • Institute of Radiation Problems of Azerbaijan National Academy of Science, 9 B. Vakhabzade Str., Baku, Azerbaijan
  • Department of Chemistry, Hacettepe University, 06800 Beytepe, Ankara, Turkey, Tel.: +90 312 297 7988, Fax: +90 312 299 2163
  • Department of Chemistry, Hacettepe University, 06800 Beytepe, Ankara, Turkey, Tel.: +90 312 297 7988, Fax: +90 312 299 2163


  • 1. Martin, M. J., Pablos, F., & Gonzalez, A. G. (1998).Discrimination between arabica and robusta green coffee varieties according to their chemical composition.Talanta, 46, 1259-1264.[Crossref]
  • 2. Silvarolla, M. B., Mazzafera, P., & de Lina, M. M. A. (2000). Caffeine content of Ethiopian Caffea Arabica beans. Genet. Mol. Biol., 23, 213-218.[Crossref]
  • 3. Barber, L. B., Leenheer, J. A., Pereira, W. E., Noyes, T.L., Brown, G. K., Tabor, C. F., & Writer, J. H. (1995).Organic compounds and sewage-derived contaminants.In R. H. Meade (Ed.) Contaminants in the Mississippi River 1987-1992 (pp. 115-135). US Geological Survey Circular 1133. Virginia.
  • 4. Paxeus, N., & Schröder, H. F. (1996). Screening for nonregulated organic compounds in municipal wastewater in Göteborg, Sweden. Water Sci. Technol., 33, 9-15.[Crossref]
  • 5. Seiler, R. L., Zaugg, S. D., Thomas, J. M., Howard, D.L. (1999). Caffeine and pharmaceuticals as indicators of wastewater contamination in wells. Ground Water, 37, 405-410.
  • 6. Pandey, A., Soccol, C. R., Nigam, P., Brand, D., Mohan, R., & Roussos, S. (2000). Biotechnological potential of coffee pulp and coffee husk for bioprocesses. Biochem.Eng. J., 6, 153-162.[PubMed][Crossref]
  • 7. Rojas, J. B. U., Verreth, J. A. J., Amato, S., & Huisman, E.S. (2003). Biological treatments affect the chemical composition of coffee pulp. Bioresour. Technol., 89, 267-274.[Crossref]
  • 8. Landolt, H. P., Dijk, D. J., Gauss, S. E., & Borbely, A.A. (1995). Caffeine reduces low-frequency delta activity in the human sleep EEG. Neuropsychopharmacology, 12, 229-238.[Crossref]
  • 9. Shilo, L., Sabbah, H., Hadari, R., Kovatz, S., Weinberg, U., Dolev, S., Dagan, Y., & Shenkman, L. (2002). The effects of coffee consumption on sleep and melatonin sectretion.Sleep Med., 3, 271-273.[Crossref]
  • 10. Gokulakrishnan, S., Chandraraj, K., Sathyanarayana, N., & Gummadi, N. (2005). Microbial and enzymatic methods for the removal of caffeine. Enzyme Microb. Technol., 37, 225-232.
  • 11. Udayasankar, K., Raghavan, C. V., Rao, P. N. S., Rao, K.L., Kuppuswamy, S., & Ramanathan, P. K. (1983). Studies on the extraction of caffeine from coffee beans. J. Food Sci. Technol.-Mysore, 20, 64-67.
  • 12. Cesaro, A., Rosso, E., & Crescenzl, V. (1976). Thermodynamics of caffeine. J. Phys. Chem., 80(3), 335-339.[Crossref]
  • 13. Gehringer, P., Proksch, E., Eschweiler, H., & Szinovatz, W. (1992). Remediation of groundwater polluted with chlorinated ethylenes by ozone-electron beam irradiation treatment. Appl. Radiat. Isot., 43(9), 1107-1115.[Crossref]
  • 14. Getoff, N. (1996). Radiation induced degradation of water pollutants-state of the art. Radiat. Phys. Chem., 47(4), 581-593.[Crossref]
  • 15. Lichtscheidl, J., & Getoff, N. (1976). Radiolysis of halogenated aromatic compounds in aqueous solutions-I conductometric pulse radiolysis and steady-state studies of the reaction of eaq -. Int. J. Radiat. Phys. Chem., 8(6), 661-665.[Crossref]
  • 16. Lin, K., Cooper, W. J., Nickelsen, M. G., Kurucz, C. N., & Waite, T. D. (1995). Decomposition of aqueous solutions of phenol using high energy electron beam irradiation. A large scale study. Appl. Radiat. Isot., 46(12), 1307-1316.[Crossref]
  • 17. Wang, T., Waite, T. D., Kurucz, C., & Cooper, W. J. (1994).Oxidant reduction and biodegradability improvement of paper mill effluent by irradiation. Water Res., 28(1), 237-241.[Crossref]
  • 18. Getoff, N. (1989). Advancements of radiation induced degradation of pollutatnts in drinking and waste water.Appl. Radiat. Isot., 40(7), 585-594.[Crossref]
  • 19. Glaze, W. H., Weinberg, H. S., Krasner, S. W., & Sclimenti, M. J. (1991) Trends in aldehyde formation and removal through plants using ozonation and biological active filters. In Proceedings of the Conference AWWAAC- -Water Quality for the New Decade, 22-27 June 1991 (pp. 913-943). Philadelphia.
  • 20. Getoff, N. (1997). Peroxyl radicals in the treatment of waste solutions. In Z. B. Alfassi (Ed.), Peroxyl radicals. (pp. 173-234). Chichester: Wiley.
  • 21. Hoigné, J., & Bader, H. (1983). Rate constants of reaction of ozone with organic and inorganic compounds in water-I non-dissociating organic compounds. Water Res., 17(12), 173-183.[Crossref]
  • 22. Rice, R. (1996). Applications of ozone for industrial wastewater treatment. A review. Ozone-Sci. Eng., 18(6), 477-515.[Crossref]
  • 23. Yao, C. C. D., & Haag, W. R. (1991). Rate constants for direct reactions of ozone with several drinking water contaminants. Water Res., 25(7), 761-773.
  • 24. Hart, E. J., Sehested, K., Bjergbakke, E., & Holcman, J. (1987). Gamma-ray initiated decomposition of aqueous ozone solution. Radiat. Phys. Chem., 29, 399-403.
  • 25. Hoigné, J. (1998). Chemistry of aqueous ozone and transformation of pollutants by ozonation and advanced oxidation processes. In The Handbook of Environmental Chemistry (Vol. 5, Part C, pp. 83-141). Berlin: Springer.
  • 26. Sehested, K., Holcman, J., & Hart, E. J. (1983). Rate constants and products of the reactions of e- aq, O2 ·-, and H with ozone in aqueous solutions. J. Phys. Chem., 87, 1951-1954.[Crossref]
  • 27. Moore, M. T., Greenway, S. L., Farris, J. L., & Guerra, B. (2008). Assessing caffeine as an emerging environmental concern using conventional approaches. Arch. Environ.Contam. Toxicol., 54, 31-35.[Crossref]
  • 28. Nash, T. (1973). The colorometric estimation of formaldehyde by means of the Hantzsch method. J. Biochem., 55, 416-421.
  • 29. American Public Health Association. (1997). Standard methods for the examination of water and wastewater. 5220B Chemical oxygen demand open reflux method. (20th ed.). Washington DC.
  • 30. Christensen, H., Sehested, K., & Løgager, T. (1994). Temperature dependence of the rate constant for reactions of hydrated electrons with H, OH and H2O2. Radiat. Phys.Chem., 43, 527-531.
  • 31. Sanchez, M., Wolfger, H., & Getoff, N. (2002). Radiation- -induced degradation of 4-chloroaniline in aqueous solution.Radiat. Phys. Chem., 65(6), 611-620.[Crossref]
  • 32. Anbar, M., Farhataziz, & Ross, A. B. (1975). Selected specific rates of reactions of transients from water in aqueous solution. II. Hydrogen atom. (National Standard Reference Data Series). Washington: US National Bureau of Standards.
  • 33. Buxton, G. V., Greenstock, C. L., Helman, W. P., & Ross, A. B. (1988). Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms, hydroxyl radicals in aqueous solutions. J. Phys. Chem. Ref. Data, 17, 533-538.
  • 34. Anbar, M., Bambenek, M., & Ross, A. B. (1973). Selected specific rates of reactions of transients from water in aqueous solution. I. Hydrated electron. (National Standard Reference Data Series. NSRDS-NBS 43). Washington: US National Bureau of Standards.
  • 35. Bielski, B. H. J., Cabelli, D. E., Arudi, R. L., & Ross, A. B. (1985). Reactivity of HO2/O2 - radicals in aqueous solution.J. Phys. Chem. Ref. Data, 14(4), 1041-1100.[Crossref]
  • 36. Getoff, N., & Prucha, M. Z. (1983). Spectroscopic and kinetic characteristics of HO2 and O2 - species studied by pulse radiolysis. Naturforscher., 3, 589-590.
  • 37. Bielski, B. H. J., & Cabelli, D. E. (1991). Review: highlights of current research involving superoxide and perhydroxyl radicals in aqueous solutions. Int. J. Radiat.Biol., 59, 291-319.[Crossref]
  • 38. Cabelli, D. E. (1997). The reactions of HO2 ·/O2 ·- radicals in aqueous solutions. In Z. B. Alfassi (Ed.), Peroxyl radicals. (pp. 407-437). Chichester: Wiley.
  • 39. Belay, A., Ture, K., Redi, M., & Asfaw, A. (2008). Measurement of caffeine in coffee beans with UV/vis spectrometer.Food Chem., 108, 310-315.[Crossref]
  • 40. Bühler, R. E., Staehelin, J., & Hoigne, J. (1984). Ozone decomposition in water studied by pulse radiolysis. 1.HO2/O2 - and HO3/O3 - as intermediates. J. Phys. Chem., 88, 2560-2564.[Crossref]
  • 41. Steahelin, J., Bühler, R. E., & Hoigne, J. (1984). Ozone decomposition in water studied by pulse radiolysis 2.OH and HO4 as chain intermediates. J. Phys. Chem., 88, 5999-6004.[Crossref]
  • 42. Tomiyasu, H., Fukutomi, H., & Gordon, G. (1985). Kinetics and mechanism of ozone decomposition by basic aqueous solution. Inorg. Chem., 24, 2962-2966.[Crossref]
  • 43. Liguori, A., Mascaro, P., Porcelli, B., Sindona, G., & Uccella, N. (1991). Identification of caffeine and its metabolites in human urine extracts by electron impact ionization tandem mass spectrometry. J. Mass Spectrom., 26(6), 608-612.
  • 44. Shi, X., & Dalal, N. S. (1991). Antioxidant behaviour of caffeine: efficient scavengers of hydroxyl radicals. Food Chem. Toxicol., 29(1), 1-6.[Crossref]
  • 45. Stadler, R. H., Richoz, J., Turesky, R. J., Wielti, D. H., & Fay, L. B. (1996). Oxidation of caffeine and related methylxanthines in ascorbate and polyphenol-driven Fenton-type oxidations. Free Radic. Res., 24(3), 225-240.
  • 46. Telo, J. P., Vieira, & A. J. S. C. (1997). Mechanism of free radical oxidation of caffeine in aqueous solution. J. Chem.Soc. Perkin Trans. 2, 9, 1755-1757.
  • 47. Kolonko, K. J., Shapiro, R. H., Barkley, R. M., & Sievers, R. E. (1979). Ozonation of caffeine in aqueous solution.J. Org. Chem., 44(22), 3769-3778.[Crossref]
  • 48. Dalmazio, I., Santos, L. S., Lopes, R. P., Eberlin, M. N., & Augusti, R. (2005). Advanced oxidation of caffeine in water: on-line and real-time monitoring by electrospray mass spectrometry. Environ. Sci. Technol., 39, 5982-5988.[Crossref]
  • 49. Torun, M., Şolpan, D., & Güven, O. (2011). Treatment of water contaminated with chlorinated organic herbicide 2,4-D by an ozone/gamma process. Ozone-Sci. Eng., 33(1), 50-65.[Crossref]
  • 50. Yang, M., Uesugi, K., & Myoga, H. (1999). Ammonia removal in bubble column by ozonation in the presence of bromide. Water Res., 33(8), 1911-1917.[Crossref]
  • 51. Bauman, F. J. (1974). Dichromate reflux chemical oxygen demand, a proposed method for chloride correction in highly saline wastes. Anal. Chem., 46, 1336-1338.[Crossref]
  • 52. Kim, B. R. (1989). Effect of ammonia on COD analysis.Journal of the Water Pollution Control Federation, 61(5), 614-617.
  • 53. Lee, E., Lee, H., Kim, Y. K., Sohn, K., & Lee, K. (2011).Hydrogen peroxide interference in chemical oxygen demand during ozone based advanced oxidation of anaerobically digested livestock wastewater. Int. J. Environ.Sci. Technol., 8(2), 381-388.[Crossref]
  • 54. Kang, Y. W., Cho, M. J., & Hwang, K. Y. (1999). Correction of hydrogen peroxide interference on standard chemical oxygen demand test. Water Res., 33(5), 1247-1251.[Crossref]
  • 55. Zak, S. (2008). Problem of correction of the chemical oxygen demand values determined in wastewaters treated by methods with hydrogen peroxide. Proceedings of ECOpole, 2(2), 409-414.
  • 56. Pala, A., & Erden, G. (2005). Decolorization of a baker’s yeast industry effluent by Fenton oxidation. J. Hazard.Mater., B127, 141-148.[Crossref]
  • 57. Martinez, N. S. S., Fernandez, J. F., Segura, X. F., & Ferrer, A. S. (2003). Pre-oxidation of an extremely polluted industrial wastewater by the Fenton’s reagent. J. Hazard.Mater., B101, 315-322.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.