PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 1 | 1-13
Article title

Inhibition of Mesenchymal Cell Contraction using Carbon
Nanotubes

Content
Title variants
Languages of publication
EN
Abstracts
EN
Fibrosis can develop after injury in many organ systems, including the
skin, lungs, and heart, yet no treatment is currently available to target the
cause of fibrosis. We hypothesize that fiber-like carbon nanotubes may
be able to interact with the mesenchymal cells to inhibit the contraction
that can lead to fibrosis. Collagen gels were populated with human
mesenchymal cells and spherical carbon black nanoparticles, singlewall
carbon nanotubes (SWNT), or multi-wall carbon nanotubes (MWNT).
The contraction, viability, actin content, and antioxidant capabilities of the
gels were evaluated over the course of one week. The initial mechanical
properties of the gels were also investigated. Both SWNT and MWNT,
but not carbon black, significantly inhibited contraction while increasing
proliferation. The nanotubes were effective even though cells in every
gel type expressed α-smooth muscle actin, which is indicative of a procontractile,
myofibroblast phenotype. The nanoparticles were shown to
not affect gel stiffness. The MWNT also act as potent antioxidants, which
may be the reason they minimize contraction. Our data show that carbon
nanotubes can modulate the pathological activity of mesenchymal cells
while increasing cell proliferation. We demonstrate that the aspect ratio of
carbon nanoparticles is an important factor in mediating nanoparticle-cell
interactions.
Publisher
Year
Volume
1
Pages
1-13
Physical description
Dates
accepted
2 - 5 - 2013
online
29 - 07 - 2013
received
31 - 1 - 2013
References
  • [1] Nielsen MS. Myocyte-fibroblast interactions--riskyconnections. Heart Rhythm. 2009, 6, 1650-1.[WoS][PubMed]
  • [2] Yang L, Hashimoto K, Tohyama M, Okazaki H, Dai X,Hanakawa Y, et al. Interactions between myofibroblastdifferentiation and epidermogenesis in constructing humanliving skin equivalents. J Dermatol Sci. 2012, 65, 50-7.[WoS][PubMed]
  • [3] Adamson IY, Hedgecock C, Bowden DH. Epithelial cellfibroblastinteractions in lung injury and repair. Am J Pathol.1990, 137, 385-92.[PubMed]
  • [4] Desmouliere A, Redard M, Darby I, Gabbiani G. Apoptosismediates the decrease in cellularity during the transitionbetween granulation tissue and scar. Am J Pathol. 1995,146, 56-66.[PubMed]
  • [5] Goel A, Shrivastava P. Post-burn scars and scar contractures.Indian J Plast Surg. 2010, 43, S63-71.
  • [6] Kim H, Liu X, Kobayashi T, Kohyama T, Wen FQ, RombergerDJ, et al. Ultrafine carbon black particles inhibit human lungfibroblast-mediated collagen gel contraction. Am J RespirCell Mol Biol. 2003, 28, 111-21.[PubMed]
  • [7] Cutroneo KR, White SL, Chiu JF, Ehrlich HP. Tissue fibrosisand carcinogenesis: divergent or successive pathwaysdictate multiple molecular therapeutic targets for oligo decoytherapies. J Cell Biochem. 2006, 97, 1161-74.[PubMed]
  • [8] Dobaczewski M, Gonzalez-Quesada C, FrangogiannisNG. The extracellular matrix as a modulator of theinflammatory and reparative response following myocardial infarction. J Mol Cell Cardiol. 2010, 48, 504-11.[WoS][PubMed]
  • [9] Kanzaki M, Yamato M, Takagi R, Kikkawa T, Isaka T, OkanoT, et al. Controlled collagen crosslinking process in tissueengineeredfibroblast sheets for preventing scar contractureon the surface of lungs. J Tissue Eng Regen Med. 2012,[WoS]
  • [10] Jackson WM, Nesti LJ, Tuan RS. Mesenchymal stem celltherapy for attenuation of scar formation during woundhealing. Stem Cell Res Ther. 2012, 3, 20.[WoS][PubMed]
  • [11] Yamaguchi Y, Kubo T, Murakami T, Takahashi M, HakamataY, Kobayashi E, et al. Bone marrow cells differentiate intowound myofibroblasts and accelerate the healing of woundswith exposed bones when combined with an occlusivedressing. Br J Dermatol. 2005, 152, 616-22.[PubMed]
  • [12] Hinz B, Gabbiani G. Fibrosis: recent advances in myofibroblastbiology and new therapeutic perspectives. F1000 Biol Rep.2010, 2, 78.
  • [13] Castella LF, Buscemi L, Godbout C, Meister JJ, Hinz B. Anew lock-step mechanism of matrix remodelling based onsubcellular contractile events. J Cell Sci. 2010, 123, 1751-60.[PubMed][WoS]
  • [14] Gabbiani G. The myofibroblast in wound healing andfibrocontractive diseases. J Pathol. 2003, 200, 500-3.[PubMed]
  • [15] Hinz B. The myofibroblast: paradigm for a mechanicallyactive cell. J Biomech. 2010, 43, 146-55.[WoS][PubMed]
  • [16] Liu Y. Cellular and molecular mechanisms of renal fibrosis.Nat Rev Nephrol. 2011, 7, 684-96.[PubMed]
  • [17] Schafer M, Werner S. Cancer as an overhealing wound: anold hypothesis revisited. Nat Rev Mol Cell Biol. 2008, 9, 628-38.[PubMed][WoS]
  • [18] Daskalopoulos EP, Janssen BJ, Blankesteijn WM.Myofibroblasts in the infarct area: concepts and challenges.Microsc Microanal. 2012, 18, 35-49.[WoS][PubMed]
  • [19] Desmouliere A, Guyot C, Gabbiani G. The stroma reactionmyofibroblast: a key player in the control of tumor cellbehavior. Int J Dev Biol. 2004, 48, 509-17.[PubMed]
  • [20] Grinnell F. Fibroblast biology in three-dimensional collagenmatrices. Trends Cell Biol. 2003, 13, 264-9.[PubMed]
  • [21] MacDonald RA, Voge CM, Kariolis M, Stegemann JP. Carbonnanotubes increase the electrical conductivity of fibroblastseededcollagen hydrogels. Acta Biomater. 2008, 4, 1583-92.
  • [22] Dallon JC, Ehrlich HP. A review of fibroblast-populatedcollagen lattices. Wound Repair Regen. 2008, 16, 472-9.[PubMed][WoS]
  • [23] Sisco PN, Wilson CG, Mironova E, Baxter SC, Murphy CJ,Goldsmith EC. The effect of gold nanorods on cell-mediatedcollagen remodeling. Nano Lett. 2008, 8, 3409-12.[WoS][PubMed]
  • [24] Supronowicz PR, Ajayan PM, Ullmann KR, Arulanandam BP,Metzger DW, Bizios R. Novel current-conducting compositesubstrates for exposing osteoblasts to alternating currentstimulation. J Biomed Mater Res. 2002, 59, 499-506.[PubMed]
  • [25] Sohaebuddin SK, Thevenot PT, Baker D, Eaton JW, Tang L.Nanomaterial cytotoxicity is composition, size, and cell typedependent. Part Fibre Toxicol. 2010, 7, 22.[PubMed]
  • [26] Voge CM, Johns J, Raghavan M, Morris MD, Stegemann JP.Wrapping and dispersion of multiwalled carbon nanotubes improves electrical conductivity of protein-nanotubecomposite biomaterials. J Biomed Mater Res A. 2012, 101,231-8.[WoS][PubMed]
  • [27] Wang X, Xia T, Ntim SA, Ji Z, Lin S, Meng H, et al. Dispersalstate of multiwalled carbon nanotubes elicits profibrogeniccellular responses that correlate with fibrogenesis biomarkersand fibrosis in the murine lung. ACS Nano. 2011, 5, 9772-87.[WoS][PubMed]
  • [28] Berlin JM, Leonard AD, Pham TT, Sano D, Marcano DC, YanS, et al. Effective drug delivery, in vitro and in vivo, by carbonbasednanovectors noncovalently loaded with unmodifiedPaclitaxel. ACS Nano. 2010, 4, 4621-36.[PubMed][WoS]
  • [29] Schipper ML, Nakayama-Ratchford N, Davis CR, KamNW, Chu P, Liu Z, et al. A pilot toxicology study of singlewalledcarbon nanotubes in a small sample of mice. NatNanotechnol. 2008, 3, 216-21.
  • [30] Bitner BR, Marcano DC, Berlin JM, Fabian RH, CherianL, Culver JC, et al. Antioxidant carbon particles improvecerebrovascular dysfunction following traumatic brain injury.ACS Nano. 2012, 6, 8007-14.[WoS][PubMed]
  • [31] Kroll A, Dierker C, Rommel C, Hahn D, Wohlleben W, Schulze-Isfort C, et al. Cytotoxicity screening of 23 engineerednanomaterials using a test matrix of ten cell lines and threedifferent assays. Part Fibre Toxicol. 2011, 8, 9.[PubMed]
  • [32] Nel AE, Madler L, Velegol D, Xia T, Hoek EM, SomasundaranP, et al. Understanding biophysicochemical interactions atthe nano-bio interface. Nat Mater. 2009, 8, 543-57.[PubMed][WoS]
  • [33] Berry CC, Shelton JC, Bader DL, Lee DA. Influence ofexternal uniaxial cyclic strain on oriented fibroblast-seededcollagen gels. Tissue Eng. 2003, 9, 613-24.[PubMed]
  • [34] Marks MW, Morykwas MJ, Wheatley MJ. Fibroblastmediatedcontraction in actinically exposed and actinicallyprotected aging skin. Plast Reconstr Surg. 1990, 86, 255-9.
  • [35] Jing Li PCM, Wing Sze Chow, Chi Kai To, Ben Zhong Tang,Jang-Kyo Kim. Correlations between Percolation Threshold,Dispersion State, and Aspect Ratio of Carbon Nanotubes.Adv Funct Mater. 2007, 17, 3207-15.[WoS]
  • [36] Bryan N, Ahswin H, Smart N, Bayon Y, Wohlert S, Hunt JA.Reactive oxygen species (ROS)--a family of fate decidingmolecules pivotal in constructive inflammation and woundhealing. Eur Cell Mater. 2012, 24, 249-65.[PubMed]
  • [37] Shi-wen X, Thompson K, Khan K, Liu S, Murphy-MarshmanH, Baron M, et al. Focal adhesion kinase and reactive oxygenspecies contribute to the persistent fibrotic phenotype oflesional scleroderma fibroblasts. Rheumatology (Oxford).2012, 51, 2146-54.[WoS]
  • [38] Schlieve CR, Lieven CJ, Levin LA. Biochemical activity ofreactive oxygen species scavengers do not predict retinalganglion cell survival. Invest Ophthalmol Vis Sci. 2006, 47,3878-86.
  • [39] Gopalakrishnan R, Subramanian V. Interaction of collagenwith carbon nanotube: a molecular dynamics investigation.J Biomed Nanotechnol. 2011, 7, 186-7.[PubMed][WoS]
  • [40] Park C OZ, Watson KA, Pawlowski SE, Lowther SE, ConnellJW, et al. Polymer-single wall carbon nanotube compositesfor potential spacecraft applications. ICASE2002. 2002-36.
  • [41] Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticitydirects stem cell lineage specification. Cell. 2006, 126, 677-89.[PubMed]
  • [42] Zhang S, Zhu L, Wong CP, Kumar S. Polymer-InfiltratedAligned Carbon Nanotube Fibers by in situ Polymerization.Macromol Rapid Commun. 2009, 30, 1936-9.[WoS][PubMed]
  • [43] Yan LY, Chen H, Li P, Kim DH, Chan-Park MB.Finely dispersed single-walled carbon nanotubes forpolysaccharide hydrogels. ACS Appl Mater Interfaces.2012, 4, 4610-5.44] Xue P, Bao Y, Li Q, Wu C. Impact of modification of carbonblack on morphology and performance of polyimide/carbonblack hybrid composites. Phys Chem Chem Phys. 2010, 12,11342-50.
  • [45] Munson-McGee SH. Estimation of the critical concentrationin an anisotropic percolation network. Phys Rev B CondensMatter. 1991, 43, 3331-6.
  • [46] Shi G, Zhang Z, Rouabhia M. The regulation of cell functionselectrically using biodegradable polypyrrole-polylactideconductors. Biomaterials. 2008, 29, 3792-8.[WoS][PubMed]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_ntr-2013-0001
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.