Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2014 | 1 | 1 |

Article title

Advances in Correlative Single-Molecule
Localization Microscopy and Electron Microscopy

Content

Title variants

Languages of publication

EN

Abstracts

EN
During the last few decades, correlative fluorescence
light and electron microscopy (FLM-EM) has
gained increased interest in the life sciences concomitant
with the advent of fluorescence light microscopy. It
has become, accompanied by numerous developments in
both techniques, an important tool to study bio-cellular
structure and function as it combines the specificity of
fluorescence labeling with the high structural resolution
and cellular context information given by the EM images.
Having the recently introduced single-molecule localization
microscopy techniques (SMLM) at hand, FLM-EM can
now make use of improved fluorescence light microscopy
resolution, single-molecule sensitivity and quantification
strategies. Here, currently used methods for correlative
SMLM and EM including the special requirements in sample
preparation and imaging routines are summarized and
an outlook on remaining challenges concerning methods
and instrumentation is provided.

Publisher

Journal

Year

Volume

1

Issue

1

Physical description

Dates

received
23 - 9 - 2014
online
28 - 1 - 2015
accepted
29 - 10 - 2014

Contributors

  • Institute of Physical
    and Theoretical Chemistry, Johann Wolfgang Goethe-University,
    Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
    Current address: Max Planck Institute for Terrestrial Microbiology
  • LOEWE Research Center for Synthetic Microbiology (SYNMIKRO),
    Department of Systems and Synthetic Microbiology, Karlvon-
    Frisch-Str. 16, 35043 Marburg, Germany

References

  • [1] Lichtman, J.W. and J.A. Conchello, Fluorescence microscopy. NatMethods, 2005. 2(12): p. 910-9.[Crossref]
  • [2] Tsien, R.Y., The green fluorescent protein. Annu Rev Biochem,1998. 67: p. 509-44.[PubMed][Crossref]
  • [3] Webster, R.E., M. Osborn, and K. Weber, Visualization of thesame PtK2 cytoskeletons by both immunofluorescence and lowpower electron microscopy. Exp Cell Res, 1978. 117(1): p. 47-61.[Crossref]
  • [4] Rieder, C.L. and S.S. Bowser, Correlative immunofluorescenceand electron microscopy on the samesection of epon-embeddedmaterial. J Histochem Cytochem, 1985. 33(2): p. 165-71.[PubMed][Crossref]
  • [5] Müller-Reichert, T. and P. Verkade, Correlative Light and ElectronMicroscopy, in Methods Cell Biol 2012, Academic Press.
  • [6] Briegel, A., et al., Correlated light and electron cryo-microscopy.Methods Enzymol, 2010. 481: p. 317-41.
  • [7] Giepmans, B.N., Bridging fluorescence microscopy and electronmicroscopy. Histochem Cell Biol, 2008. 130(2): p. 211-7.[PubMed][Crossref]
  • [8] Cortese, K., A. Diaspro, and C. Tacchetti,Advanced correlativelight/electron microscopy: current methods and new developmentsusing Tokuyasu cryosections. J Histochem Cytochem,2009. 57(12): p. 1103-12.[PubMed][Crossref]
  • [9] Betzig, E., et al., Imaging intracellular fluorescent proteins atnanometer resolution. Science, 2006. 313(5793): p. 1642-5.
  • [10] Rust, M.J., M. Bates, and X. Zhuang, Sub-diffraction-limit imagingby stochastic optical reconstruction microscopy (STORM).Nat Methods, 2006. 3(10): p. 793-5.[Crossref][PubMed]
  • [11] Heilemann, M., et al., Subdiffraction-resolution fluorescenceimaging with conventional fluorescent probes. Angew Chem IntEd Engl, 2008. 47(33): p. 6172-6.[Crossref]
  • [12] Shannon, C.E., Communication in the Presence of Noise. Proceedingsof the Institute of Radio Engineers, 1949. 37(1): p. 10-21.
  • [13] Watanabe, S., et al., Protein localization in electron micrographsusing fluorescence nanoscopy. Nat Methods, 2011. 8(1):p. 80-4.[Crossref]
  • [14] Perinetti, G., et al., Correlation of 4Pi and Electron Microscopyto Study Transport Through Single Golgi Stacks in Living Cellswith Super Resolution. Traffic, 2009. 10(4): p. 379-391.[Crossref]
  • [15] Monserrate, A., S. Casado, and C. Flors, Correlative atomicforce microscopy and localization-based super-resolution microscopy:revealing labelling and image reconstruction artefacts.ChemPhysChem, 2014. 15(4): p. 647-50.[PubMed][Crossref]
  • [16] Harke, B., et al., A novel nanoscopic tool by combining AFM withSTED microscopy. Optical Nanoscopy, 2012. 1(1): p. 3.
  • [17] Sharma, S., et al., Correlative nanomechanical profiling withsuper-resolution F-actin imaging reveals novel insights intomechanisms of cisplatin resistance in ovarian cancer cells.Nanomedicine-Nanotechnology Biology and Medicine, 2012.8(5): p. 757-766.[Crossref]
  • [18] Chacko, J.V., et al., Sub-diffraction nano manipulation usingSTED AFM. PLoS One, 2013. 8(6): p. e66608.[Crossref]
  • [19] Zanacchi, F.C., et al., Live-cell 3D super-resolution imaging inthick biological samples. Nat Methods, 2011. 8(12): p. 1047-+.[Crossref]
  • [20] Lavagnino, Z., F.C. Zanacchi, and A. Diaspro, Two-Photon Excitationand Selective Plane Illumination Microscopy: A Combinationto Minimize Scattering Effects While Imaging Thick Samples.Biophys J, 2013. 104(2): p. 670a-670a.[Crossref]
  • [21] Flottmann, B., et al., Correlative light microscopy for highcontentscreening. Biotechniques, 2013. 55(5): p. 243-52.
  • [22] Holden, S.J., et al., High throughput 3D super-resolution microscopyreveals Caulobacter crescentus in vivo Z-ring organization.Proc Natl Acad Sci U S A, 2014. 111(12): p. 4566-4571.
  • [23] Gunkel, M., et al., Integrated and correlative high-throughputand super-resolution microscopy. Histochem Cell Biol, 2014.141(6): p. 597-603.
  • [24] Nanguneri, S., et al., Three-dimensional, tomographic superresolutionfluorescence imaging of serially sectioned thick samples.PLoS One, 2012. 7(5): p. e38098.[Crossref]
  • [25] Kopek, B.G., et al., Correlative 3D superresolution fluorescenceand electron microscopy reveal the relationship of mitochondrialnucleoids to membranes. Proc Natl Acad Sci U S A, 2012.109(16): p. 6136-41.[Crossref]
  • [26] Suleiman, H., et al., Nanoscale protein architecture of the kidneyglomerular basement membrane. Elife, 2013. 2: p. e01149.
  • [27] Perkovic, M., et al., Correlative light- and electron microscopywith chemical tags. J Struct Biol, 2014. 186(2): p. 205-13.[Crossref]
  • [28] Sochacki, K.A., et al., Correlative super-resolution fluorescenceand metal-replica transmission electron microscopy. Nat Methods,2014. 11(3): p. 305-8.[Crossref]
  • [29] Loschberger, A., et al., Correlative super-resolution fluorescenceand electron microscopy of the nuclear pore complex withmolecular resolution. J Cell Sci, 2014.
  • [30] Chang, Y.W., et al., Correlated cryogenic photoactivated localizationmicroscopy and cryo-electron tomography. Nat Methods,2014. 11(7): p. 737-9.[Crossref]
  • [31] Kaufmann, R., et al., Super-resolution microscopy using standardfluorescent proteins in intact cells under cryo-conditions.Nano Lett, 2014. 14(7): p. 4171-5.[Crossref]
  • [32] Watanabe, S. and E.M. Jorgensen, Chapter 15 - Visualizing Proteinsin ElectronMicrographs at Nanometer Resolution, in MethodsCell Biol, M.-R. Thomas and V. Paul, Editors. 2012, AcademicPress. p. 283-306.
  • [33] Dubochet, J., The physics of rapid cooling and its implicationsfor cryoimmobilization of cells. Methods Cell Biol, 2007. 79: p.7-21.[PubMed][Crossref]
  • [34] Nickell, S., et al., A visual approach to proteomics. Nat Rev MolCell Biol, 2006. 7(3): p. 225-30.[PubMed][Crossref]
  • [35] Hess, S.T., et al., Dynamic clustered distribution of hemagglutininresolved at 40 nm in living cell membranes discriminatesbetween raft theories. Proc Natl Acad Sci U S A, 2007. 104(44): p. 17370-5.[Crossref]
  • [36] Shroff, H., et al., Live-cell photoactivated localization microscopyof nanoscale adhesion dynamics. Nat Methods, 2008.5(5): p. 417-23.[Crossref]
  • [37] Niu, L. and J. Yu, Investigating intracellular dynamics of FtsZ cytoskeletonwith photoactivation single-molecule tracking. BiophysJ, 2008. 95(4): p. 2009-16.[Crossref][PubMed]
  • [38] Manley, S., et al., High-density mapping of single-molecule trajectorieswith photoactivated localization microscopy. Nat Methods,2008. 5(2): p. 155-7.[Crossref]
  • [39] Biteen, J.S., et al., Super-resolution imaging in live Caulobactercrescentus cells using photoswitchable EYFP. Nat Methods,2008. 5(11): p. 947-9.[PubMed][Crossref]
  • [40] Wombacher, R., et al., Live-cell super-resolution imaging withtrimethoprim conjugates. Nat Methods, 2010. 7(9): p. 717-9.[Crossref]
  • [41] Lee, H.L., et al., Superresolution imaging of targeted proteinsin fixed and living cells using photoactivatable organic fluorophores.J Am Chem Soc, 2010. 132(43): p. 15099-101.
  • [42] Jones, S.A., et al., Fast, three-dimensional super-resolutionimaging of live cells. Nat Methods, 2011. 8(6): p. 499-508.[Crossref]
  • [43] Klein, T., et al., Live-cell dSTORM with SNAP-tag fusion proteins.Nat Methods, 2011. 8(1): p. 7-9.[Crossref]
  • [44] Eckhardt, M., et al., A SNAP-tagged derivative of HIV-1–a versatiletool to study virus-cell interactions. PLoS One, 2011. 6(7): p.e22007.
  • [45] Lukinavicius, G., et al., A near-infrared fluorophore for livecellsuper-resolution microscopy of cellular proteins. Nat Chem,2013. 5(2): p. 132-9.[Crossref]
  • [46] Izeddin, I., et al., Super-resolution dynamic imaging of dendriticspines using a low-affinity photoconvertible actin probe. PLoSOne, 2011. 6(1): p. e15611.[Crossref]
  • [47] Shroff, H., et al., Dual-color superresolution imaging of geneticallyexpressed probes within individual adhesion complexes.Proc Natl Acad Sci U S A, 2007. 104(51): p. 20308-13.[Crossref]
  • [48] Subach, F.V., et al., Photoactivatable mCherry for highresolutiontwo-color fluorescence microscopy. Nat Methods,2009. 6(2): p. 153-9.[Crossref]
  • [49] Subach, F.V., et al., Bright monomeric photoactivatable red fluorescentprotein for two-color super-resolution sptPALM of livecells. J Am Chem Soc, 2010. 132(18): p. 6481-91.
  • [50] Testa, I., et al., Multicolor fluorescence nanoscopy in fixed andliving cells by exciting conventional fluorophores with a singlewavelength. Biophys J, 2010. 99(8): p. 2686-94.[Crossref]
  • [51] Gunewardene, M.S., et al., Superresolution imaging of multiplefluorescent proteins with highly overlapping emission spectrain living cells. Biophys J, 2011. 101(6): p. 1522-8.[Crossref]
  • [52] Wilmes, S., et al., Triple-color super-resolution imaging of livecells: resolving submicroscopic receptor organization in theplasma membrane. Angew Chem Int Ed Engl, 2012. 51(20): p.4868-71.[Crossref]
  • [53] Appelhans, T., et al., Nanoscale organization of mitochondrialmicrocompartments revealed by combining tracking and localizationmicroscopy. Nano Lett, 2012. 12(2): p. 610-6.[Crossref]
  • [54] Benke, A., et al.,Multicolor single molecule tracking of stochasticallyactive synthetic dyes. Nano Lett, 2012. 12(5): p. 2619-24.[Crossref]
  • [55] Klein, T., S. van de Linde, and M. Sauer, Live-cell superresolutionimaging goes multicolor. ChemBioChem, 2012.13(13): p. 1861-3.[Crossref]
  • [56] Mlodzianoski, M.J., et al., Sample drift correction in 3D fluorescencephotoactivation localization microscopy. Opt Express,2011. 19(16): p. 15009-19.[Crossref]
  • [57] Bleck, C.K., et al., Comparison of different methods for thin sectionEM analysis ofMycobacterium smegmatis. J Microsc, 2010.237(1): p. 23-38.
  • [58] Hurbain, I. and M. Sachse, The future is cold: cryo-preparationmethods for transmission electron microscopy of cells. Biologyof the Cell, 2011. 103(9): p. 405-420.[Crossref]
  • [59] Clancy, B. and L.J. Cauller, Reduction of background autofluorescencein brain sections following immersion in sodium borohydride.J Neurosci Methods, 1998. 83(2): p. 97-102.[Crossref][PubMed]
  • [60] Moerner, W.E. and M. Orrit, Illuminating single molecules incondensed matter. Science, 1999. 283(5408): p. 1670-6.
  • [61] Schwartz, C.L., et al., Cryo-fluorescence microscopy facilitatescorrelations between light and cryo-electron microscopy and reducesthe rate of photobleaching. J Microsc, 2007. 227(Pt 2): p.98-109.
  • [62] Kozankiewicz, B. and M. Orrit, Single-molecule photophysics,from cryogenic to ambient conditions. Chem Soc Rev, 2014.43(4): p. 1029-43.[PubMed][Crossref]
  • [63] Creemers, T.M., et al., Photophysics and optical switching ingreen fluorescent protein mutants. Proc Natl Acad Sci U S A,2000. 97(7): p. 2974-8.[Crossref]
  • [64] Faro, A.R., et al., Low-temperature switching by photoinducedprotonation in photochromic fluorescent proteins. PhotochemPhotobiol Sci, 2010. 9(2): p. 254-62.[Crossref]
  • [65] Kaufmann, R., C. Hagen, and K. Grunewald, Fluorescence cryomicroscopy:current challenges and prospects. Curr Opin ChemBiol, 2014. 20: p. 86-91.[Crossref]
  • [66] Weisenburger, S., et al., Cryogenic colocalization microscopyfor nanometer-distance measurements. ChemPhysChem, 2014.15(4): p. 763-70.[Crossref]
  • [67] Weisenburger, S., et al. Cryogenic localization of singlemolecules with angstrom precision. 2013.
  • [68] Le Gros, M.A., et al., High-aperture cryogenic light microscopy.J Microsc, 2009. 235(1): p. 1-8.
  • [69] Shibata, Y., et al., Development of a novel cryogenic microscopewith numerical aperture of 0.9 and its application to photosynthesisresearch. Biochim Biophys Acta, 2014. 1837(6): p. 880-7.
  • [70] Carlson, D.B. and J.E. Evans, Low-cost cryo-light microscopystage fabrication for correlated light/electron microscopy. J VisExp, 2011(52).[Crossref]
  • [71] Tokuyasu, K.T., A technique for ultracryotomy of cell suspensionsand tissues. J Cell Biol, 1973. 57(2): p. 551-65.[Crossref]
  • [72] Bates, M., et al., Multicolor super-resolution imaging withphoto-switchable fluorescent probes. Science, 2007. 317(5845):p. 1749-53.
  • [73] Heuser, J., Preparing biological samples for stereomicroscopyby the quick-freeze, deep-etch, rotary-replication technique.Methods Cell Biol, 1981. 22: p. 97-122.[Crossref]
  • [74] van de Linde, S. and M. Sauer, Howto switch a fluorophore: fromundesired blinking to controlled photoswitching. Chem Soc Rev,2014. 43(4): p. 1076-87.
  • [75] Jimenez, N., et al., Gridded Aclar: preparation methods and usefor correlative light and electron microscopy of cell monolayers,by TEM and FIB-SEM. J Microsc, 2010. 237(2): p. 208-20.
  • [76] Kukulski,W., et al., Correlated fluorescence and 3D electron microscopywith high sensitivity and spatial precision. J Cell Biol,2011. 192(1): p. 111-9.[Crossref]
  • [77] Kukulski, W., et al., Chapter 13 - Precise, Correlated FluorescenceMicroscopyand Electron Tomography of Lowicryl Sections Using Fluorescent Fiducial Markers, in Methods Cell Biol, M.-R.Thomas and V. Paul, Editors. 2012, Academic Press. p. 235-257.
  • [78] Keppler, A., et al., A general method for the covalent labelingof fusion proteins with small molecules in vivo. Nat Biotechnol,2003. 21(1): p. 86-9.
  • [79] Los, G.V., et al., HaloTag: a novel protein labeling technology forcell imaging and protein analysis. ACS Chem Biol, 2008. 3(6): p.373-82.[Crossref]
  • [80] Holm, T., et al., A blueprint for cost-efficient localization microscopy.ChemPhysChem, 2014. 15(4): p. 651-4.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_nbi-2014-0002
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.