Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2014 | 1 | 1 |

Article title

Pathways to optical STED microscopy

Content

Title variants

Languages of publication

EN

Abstracts

EN
Optical far-field microscopy such as confocal fluorescence microscopy is a very popular technique for investigating the living cell. Unfortunately, its spatial resolution is limited to around 200 nm, impeding the imaging of small molecular assemblies. Recent decades have seen the development of optical nanoscopy, optical far-field microscopy with a spatial resolution down to molecular scales. STED microscopy was the first of such nanoscopy techniques. Despite the fact, that it in principle only requires the addition of a strong STED laser to a conventional microscope, STED nanoscopy was for a long time considered as a very complex technique, impossible to be applicable as a turn-key technique in everyday biological research. However, recent years has seen important improvements of the STED nanoscopy approach which have significantly simplified the setup. These developments mainly followed from optimization of fluorescent labels, laser technology and optical simplifications. As a result, STED microscopy setups have got more compact and have been realized on commercial instruments, allowing access to lessexperienced users in open imaging facilities. Here, we give a brief overview of the recent improvements in STED microscopy that made these important developments possible

Publisher

Journal

Year

Volume

1

Issue

1

Physical description

Dates

published
1 - 1 - 2014
online
15 - 10 - 2013
received
18 - 9 - 2013
accepted
4 - 10 - 2013

Contributors

  • MRC Human Immunology Unit and Wolfson Imaging CentreOxford, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
  • MRC Human Immunology Unit and Wolfson Imaging Centre Oxford, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
  • Nanophysics department, Instituto Italiano di Tecnologia, Genova, Italy
  • MRC Human Immunology Unit and Wolfson Imaging CentreOxford, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
  • MRC Human Immunology Unit and Wolfson Imaging CentreOxford, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
  • MRC Human Immunology Unit and Wolfson Imaging CentreOxford, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
  • Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
  • MRC Human Immunology Unit and Wolfson Imaging CentreOxford, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
  • MRC Human Immunology Unit and Wolfson Imaging CentreOxford, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom

References

  • [1] Pawley, J. B. (2006) Handbook of biological confocal microscopy, 2nd ed., Springer, New York.
  • [2] Abbe, E. (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischenWahrnehmung, Archiv für Mikroskopische Anatomie 9, 413-468.
  • [3] Hell, S. W. (2009) Microscopy and its focal switch, Nat Methods 6, 24-32.[Crossref]
  • [4] Hell, S. W. (2003) Toward fluorescence nanoscopy, Nat Biotechnol 21, 1347-1355.[Crossref]
  • [5] Hell, S. W., Dyba, M., and Jakobs, S. (2004) Concepts for nanoscale resolution in fluorescence microscopy, Curr Opin Neurobiol 14, 599-609.[Crossref]
  • [6] Moerner, W. E. (2006) Single-molecule mountains yield nanoscale cell images, Nat Methods 3, 781-782.[Crossref]
  • [7] Hell, S. W. (2007) Far-Field Optical Nanoscopy, Science 316, 1153-1158.[Crossref]
  • [8] Heintzmann, R., and Ficz, G. (2007) Breaking the resolution limit in light microscopy, Methods Cell Biol 81, 561-580.[Crossref]
  • [9] Rice, J. H. (2007) Beyond the diffraction limit: farfield fluorescence imaging with ultrahigh resolution, Mol Biosyst 3, 781-793.[Crossref]
  • [10] Bates, M., Huang, B., and Zhuang, X. W. (2008) Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes, Curr Opin Chem Biol 12, 505-514.[Crossref]
  • [11] Dedecker, P., Hofkens, J., and Hotta, J. I. (2008) Diffraction-unlimited optical microscopy, Materials Today 11, 12-21.[Crossref]
  • [12] Fernandez-Suarez, M., and Ting, A. Y. (2008) Fluorescent probes for super-resolution imaging in living cells, Nat Rev Mol Cell Biol 9, 929-943.[Crossref]
  • [13] Hell, S. (2009) Far-Field Optical Nanoscopy, In Single Molecule Spectroscopy in Chemistry (Gräslund, A., Rigler, R., Widengren, J., Ed.), pp 365 -398, Springer, Berlin.
  • [14] Evanko, D. (2009) Primer: fluorescence imaging under the diffraction limit, Nat Methods 6, 19-20.[Crossref]
  • [15] Lippincott-Schwartz, J., and Manley, S. (2009) Putting super-resolution fluorescence microscopy to work, Nat Methods 6, 21-23.[Crossref]
  • [16] Huang, B., Bates, M., and Zhuang, X. (2009) Superresolution fluorescence microscopy, Annual Reviews of Biochemistry 78, 993-1016.[Crossref]
  • [17] Heilemann, M., Dedecker, P., Hofkens, J., and Sauer, M. (2009) Photoswitches: Key molecules for subdiffraction-resolution fluorescence imaging and molecular quantification, Laser & Photon Rev 3, 180-202.[Crossref]
  • [18] Heintzmann, R., and Gustafsson, M. G. L. (2009) Subdiffraction resolution in continuous samples, Nat Photonics 3, 362-364.[Crossref]
  • [19] Chi, K. R. (2009) Super-resolution microscopy: breaking the limits, Nat Methods 6, 15-18.[Crossref]
  • [20] Huang, B., Babcock, H., and Zhuang, X. (2010) Breaking the diffraction barrier: super-resolution imaging of cells, Cell 143, 1047-1058.[Crossref]
  • [21] Huang, B. (2010) Super-resolution optical microscopy: multiple choices, Curr Opin Chem Biol 14, 10-14.[Crossref]
  • [22] Patterson, G., Davidson, M., Manley, S., and Lippincott-Schwartz, J. (2010) Superresolution Imaging using Single-Molecule Localization, Annu Rev Phys Chem 61, 345-367.[Crossref]
  • [23] Dempsey, G. T., Vaughan, J. C., Chen, K. H., Bates, M., and Zhuang, X. (2011) Evaluation of fluorophores for optimal performance in localizationbased super-resolution imaging, Nat Methods 8, 1027-1036.[Crossref]
  • [24] Muller, T., Schumann, C., and Kraegeloh, A. (2012) STED Microscopy and its Applications: New Insights into Cellular Processes on the Nanoscale, Chemphyschem 13, 1986-2000.[Crossref]
  • [25] Eggeling, C., Willig, K. I., and Barrantes, F. J. (2013) STED microscopy of living cells - New frontiers in membrane and neurobiology, J Neurochem 126, 203-212.[Crossref]
  • [26] Hell, S. W., and Wichmann, J. (1994) Breaking the diffraction resolution limit by stimulated-emission - stimulated-emission-depletion fluorescence microscopy, Opt Lett 19, 780-782.[Crossref]
  • [27] Klar, T. A., and Hell, S. W. (1999) Subdiffraction resolution in far-field fluorescence microscopy, Opt Lett 24, 954-956.[Crossref]
  • [28] Donnert, G., Keller, J., Medda, R., Andrei, M. A., Rizzoli, S. O., Lurmann, R., Jahn, R., Eggeling, C., and Hell, S. W. (2006) Macromolecular-scale resolution in biological fluorescence microscopy, PNAS 103, 11440-11445.[Crossref]
  • [29] Leutenegger, M., Eggeling, C., and Hell, S. W. (2010) Analytical description of STED microscopy performance, Opt. Express 18, 26417.[Crossref]
  • [30] Göttfert, F., Wurm, C. A., Mueller, V., Berning, S., Cordes, V. C., Honigmann, A., and Hell, S. W. (2013) Coaligned Dual-Channel STED Nanoscopy and Molecular Diffusion Analysis at 20 nm Resolution, Biophys J 105,, L01 - L03.[Crossref]
  • [31] Willig, K. I., Kellner, R. R., Medda, R., Hein, B., Jakobs, S., and Hell, S. W. (2006) Nanoscale resolution in GFP-based microscopy, Nat Methods 3, 721-723.[Crossref]
  • [32] Hein, B., Willig, K. I., and Hell, S. W. (2008) Stimulated emission depletion (sted) nanoscopy of a fluorescent protein-labeled organelle inside a living cell, PNAS 105, 14271-14276.[Crossref]
  • [33] Dyba, M., and Hell, S. W. (2003) Photostability of a fluorescent marker under pulsed excited-state depletion through stimulated emission, Appl Opt 42, 5123-5129.[Crossref]
  • [34] Vicidomini, G., Moneron, G., Eggeling, C., Rittweger, E., and Hell, S. W. (2012) STED with wavelengths closer to the emission maximum, Opt Express 20, 5225-5236.[Crossref]
  • [35] Schröder, J., Benink, H., Dyba, M., and Los, G. V. (2008) In Vivo Labeling Method Using a Genetic Construct for Nanoscale Resolution Microscopy, Biophys J 96, L1-L3.
  • [36] Fitzpatrick, J. A., Yan, Q., Sieber, J. J., Dyba, M., Schwarz, U., Szent-Gyorgyi, C., Woolford, C. A., Berget, P. B., Waggoner, A. S., and Bruchez, M. P. (2009) STED nanoscopy in living cells using fluorogen activating proteins, Bioconjug Chem 20, 1843-1847.[Crossref]
  • [37] Morozova, K. S., Piatkevich, K. D., Gould, T. J., Zhang, J., Bewersdorf, J., and Verkhusha, V. V. (2010) Far-Red Fluorescent Protein Excitable with Red Lasers for Flow Cytometry and Superresolution STED Nanoscopy, Biophys J 99, L13-L15.
  • [38] Willig, K. I., Keller, J., Bossi, M., and Hell, S. W. (2006) STED microscopy resolves nanoparticle as- semblies, New J Phys 8, 106.[Crossref]
  • [39] Westphal, V., Blanca, C. M., Dyba, M., Kastrup, L., and Hell, S. W. (2003) Laser-diode-stimulated emission depletion microscopy, Appl Phys Lett 82, 3125-3127.[Crossref]
  • [40] Rittweger, E., Han, K. Y., Irvine, S. E., Eggeling, C., and Hell, S. W. (2009) Sted microscopy reveals crystal colour centres with nanometric resolution, Nat Photonics 3, 144-147.[Crossref]
  • [41] Auksorius, E., Boruah, B. R., Dunsby, C., Lanigan, P. M. P., Kennedy, G., Neil, M. A. A., and French, P. M. W. (2008) Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging, Opt Lett 33, 113-115.[Crossref]
  • [42] Wildanger, D., Rittweger, E., Kastrup, L., and Hell, S. W. (2008) STED microscopy with a supercontinuum laser source, Opt Express 16, 9614-9621.[Crossref]
  • [43] Wildanger, D., Medda, R., Kastrup, L., and Hell, S. W. (2009) A compact STED microscope providing 3D nanoscale resolution, J Microsc 236, 35-43.
  • [44] Wildanger, D., Bückers, J., Westphal, V., Hell, S. W., and Kastrup, L. (2009) A STED microscope aligned by design, Opt Express 17, 16100-16110.[Crossref]
  • [45] Blom, H., Rönnlund, D., Scott, L., Spicarova, Z., Widengren, J., Bondar, A., Aperia, A., and Brismar, H. (2011) Spatial distribution of Na+-K+-ATPase in dendritic spines dissected by nanoscale superresolution STED microscopy, BMC Neuroscience 12, 16.[Crossref]
  • [46] Rankin, B. R., Kellner, R. R., and Hell, S. W. (2008) Stimulated-emission-depletion microscopy with a multicolor stimulated-Raman-scattering light source, Opt Lett 33, 2491-2493.[Crossref]
  • [47] Rankin, B. R., and Hell, S. W. (2009) STED microscopy with a MHz pulsed stimulated-Ramanscattering source, Opt Express 17, 15679-15684.[Crossref]
  • [48] Rankin, B. R., Moneron, G., Wurm, C. A., Nelson, J. C., Walter, A., Schwarzer, D., Schroeder, J., Colon- Ramos, D. A., and Hell, S. W. (2011) Nanoscopy in a Living Multicellular Organism Expressing GFP, Biophys J 100, L63-L65.
  • [49] Willig, K. I., Harke, B., Medda, R., and Hell, S. W. (2007) STED microscopy with continuous wave beams, Nat Methods 4, 915-918.[Crossref]
  • [50] Harke, B. (2008) 3D STED Microscopy with Pulsed and Continuous Wave Lasers, Georg- August-University Goettingen, Goettingen.
  • [51] Ding, J. B., Takasaki, K. T., and Sabatini, B. L. (2009) Supraresolution Imaging in Brain Slices using Stimulated-Emission Depletion Two-Photon Laser Scanning Microscopy, Neuron 63, 429-437.[Crossref]
  • [52] Moneron, G., and Hell, S. (2009) Two-photon excitation STED microscopy, Opt Express 17, 14567-14573.[Crossref]
  • [53] Moneron, G., Medda, R., Hein, B., Giske, A., Westphal, V., and Hell, S. W. (2010) Fast STED microscopy with continuous wave fiber lasers, Opt Express 18, 1302-1309.[Crossref]
  • [54] Bianchini, P., and Diaspro, A. (2012) Fast scanning STED and two-photon fluorescence excitation microscopy with continuous wave beam, J Microsc 245, 225-228.[Crossref]
  • [55] Honigmann, A., Eggeling, C., Schulze, M., and Lepert, A. (2012) Super-resolution STED microscopy advances with yellow CW OPSL, Laser Focus World: international resource for technology and applications in the global photonics industry 48, 75-79.
  • [56] Mueller, V., Eggeling, C., Karlsson, H., and von Gegerfelt, D. (2012) CW DPSS Lasers Make STED Microscopy More Practical, Biophotonics 19, 30-32.
  • [57] Friedemann, K., Turshatov, A., Landfester, K., and Crespy, D. (2011) Characterization via two-color STED microscopy of nanostructured materials synthesized by colloid electrospinning, Langmuir 27, 7132-7139.[Crossref]
  • [58] Moffitt, J. R., Osseforth, C., and Michaelis, J. (2011) Time-gating improves the spatial resolution of STED microscopy, Opt Express 19, 4242-4254.[Crossref]
  • [59] Vicidomini, G., Moneron, G., Han, K. Y., Westphal, V., Ta, H., Reuss, M., Engelhardt, H., Eggeling, C., and Hell, S. W. (2011) Sharper low-power STED nanoscopy by time gating, Nat Methods 8, 571-573.[Crossref]
  • [60] Vicidomini, G., Schoenle, A., Ta, H., Han, K. Y., Moneron, G., Eggeling, C., and Hell, S. W. (2013) STED Nanoscopy with Time-Gated Detection: Theoretical and Experimental Aspects, PloS ONE 8, e54421.[Crossref]
  • [61] Kastrup, L., Wildanger, D., Rankin, B., and Hell, S. W. (2010) STED Microscopy with Compact Light Sources, In Nanoscopy and Multidimensional Optical Fluorescence Microscopy (Diaspro, A., Ed.), pp 1 - 13, Chapman & Hall/CRC, Boca Raton.
  • [62] Reuss, M., Engelhardt, J., and Hell, S. (2010) Birefringent device converts a standard scanning microscope into a STED microscope that also maps molecular orientation, Opt Express 18, 1049 - 1058.[Crossref]
  • [63] Gould, T. J., Burke, D., Bewersdorf, J., and Booth, M. J. (2012) Adaptive optics enables 3D STED microscopy in aberrating specimens, Opt Express 20, 20998.[Crossref]
  • [64] Gould, T. J., Kromann, E. B., Burke, D., Booth, M. J., and Bewersdorf, J. (2013) Auto-aligning stimulated emission depletion microscope using adaptive optics, Opt Lett 38, 1860-1862. [Crossref]
  • [65] Denk, W., Strickler, J. H., and Webb, W. W. (1990) 2- photon laser scanning fluorescence microscopy, Science 248, 73-76.[Crossref]
  • [66] Denk, W. (1996) Two-photon excitation in functional biological imaging, J Biomed Opt 1, 296-304.[Crossref]
  • [67] Dittrich, P. S., and Schwille, P. (2001) Photobleaching and stabilization of fluorophores used for singlemolecule analysis with one- and two-photon excitation, Appl Phys B 73, 829-837.[Crossref]
  • [68] Eggeling, C., Volkmer, A., and Seidel, C. A. M. (2005) Molecular Photobleaching Kinetics of Rhodamine 6G by One- and Two-Photon Induced Confocal Fluorescence Microscopy, Chemphyschem 6, 791-804.[Crossref]
  • [69] Eggeling, C., Widengren, J., Rigler, R., and Seidel, C. A. M. (1998) Photobleaching of fluorescent dyes under conditions used for single-molecule detection: Evidence of two-step photolysis, Anal Chem 70, 2651-2659.[Crossref]
  • [70] Ringemann, C., Schonle, A., Giske, A., von Middendorff, C., Hell, S. W., and Eggeling, C. (2008) Enhancing Fluorescence Brightness: Effect of Reverse Intersystem Crossing Studied by Fluorescence Fluctuation Spectroscopy, Chemphyschem 9, 612-624.[Crossref]
  • [71] Hotta, J., Fron, E., Dedecker, P., Janssen, K. P. F., Li, C., Muellen, K., Harke, B., Bückers, J., Hell, S. W., and Hofkens, J. (2010) Spectroscopic Rationale for Efficient Stimulated-Emission Depletion Microscopy Fluorophores, J Am Chem Soc 132, 5021 - 5023.[Crossref]
  • [72] Donnert, G., Eggeling, C., and Hell, S. W. (2009) Triplet-Relaxation Microscopy with bunched pulsed excitation, Photochem Photobiol 8, 481-485.[Crossref]
  • [73] Urban, N. T., Willig, K. I., Hell, S. W., and Nagerl, U. V. (2011) STED Nanoscopy of Actin Dynamics in Synapses Deep Inside Living Brain Slices, Biophys J 101, 1277-1284.[Crossref]
  • [74] Berning, S., Willig, K. I., Steffens, H., Dibaj, P., and Hell, S. W. (2012) Nanoscopy in a Living Mouse Brain, Science 335, 551.[Crossref]
  • [75] Kolmakov, K., Belov, V. N., Bierwagen, J., Ringemann, C., Mueller, V., Eggeling, C., and Hell, S. W. (2010) Red-Emitting Rhodamine Dyes for Fluorescence Microscopy and Nanoscopy, Chemistry - A European Journal 16, 158-166.[Crossref]
  • [76] Kolmakov, K., Belov, V. N., Wurm, C. A., Harke, B., Leutenegger, M., Eggeling, C., and Hell, S. W. (2010) A Versatile Route to Red-Emitting Carbopyronine Dyes for Optical Microscopy and Nanoscopy, Eur. J. Org. Chem. 2010, 3593-3610.
  • [77] Mitronova, G. Y., Belov, V. N., Bossi, M. L., Wurm, C. A., Meyer, L., Medda, R., Moneron, G., Bretschneider, S., Eggeling, C., Jakobs, S., and Hell, S. W. (2010) New Fluorinated Rhodamines for Optical Microscopy and Nanoscopy, Chemistry A European Journal 16, 4477 - 4488.[Crossref]
  • [78] Opazo, F., Levy, M., Byrom, M., Schaefer, C., Geisler, C., Groemer, T. W., Ellington, A. D., and Rizzoli, S. O. (2012) Aptamers as potential tools for superresolution microscopy, Nat Methods 9, 938-939.[Crossref]
  • [79] Hein, B., Willig, K. I., Wurm, C. A., Westphal, V., Jakobs, S., and Hell, S. W. (2010) Stimulated Emission Depletion Nanoscopy of Living Cells Using SNAP-Tag Fusion Proteins, Biophys J 98, 158 -163.[Crossref]
  • [80] Pellett, P. A., Sun, X., Gould, T. J., Rothman, J. E., Xu, M.-Q., Correa Jr., I. R., and Bewersdorf, J. (2011) Two-color STED microscopy in living cells, Biomedical Optics Express 2, 2364-2371.[Crossref]
  • [81] Lukinavicius, G., Umezawa, K., Olivier, N., Honigmann, A., Yang, G., Plass, T., Mueller, V., Reymond, L., Correa, I. R., Luo, Z.-G., Schultz, C., Lemke, E. A., Heppenstall, P., Eggeling, C., and Johnsson, K. (2013) A near-infrared fluorophore for live-cell superresolution microscopy of cellular proteins, Nature Chemistry 5, 132-139.[Crossref]
  • [82] Schmidt, R., Wurm, C. A., Jakobs, S., Engelhardt, J., Egner, A., and Hell, S. W. (2008) Spherical nanosized focal spot unravels the interior of cells, Nat Methods 5, 539-544.[Crossref]
  • [83] Dean, C., Liu, H., Staudt, T., Stahlberg, M. A., Vingill, S., Buckers, J., Kamin, D., Engelhardt, J., Jackson, M. B., Hell, S. W., and Chapman, E. R. (2012) Distinct subsets of Syt-IV/BDNF vesicles are sorted to axons versus dendrites and recruited to synapses by activity, The Journal of Neuroscience 32, 5398-5413.[Crossref]
  • [84] Donnert, G., Keller, J., Wurm, C. A., Rizzoli, S. O., Westphal, V., Schoenle, A., Jahn, R., Jakobs, S., Eggeling, C., and Hell, S. W. (2007) Two-Color Far- Field Fluorescence Nanoscopy, Biophys J 92, L67- L69.
  • [85] Meyer, L., Wildanger, D., Medda, R., Punge, A., Rizzoli, S. O., Donnert, G., and Hell, S. W. (2008) Dualcolor sted microscopy at 30-nm focal-plane resolution, Small 4, 1095-1100.[Crossref]
  • [86] Neumann, D., Bückers, J., Kastrup, L., Hell, S., and Jakobs, S. (2010) Two-color STED microscopy reveals different degrees of colocalization between hexokinase-I and the three human VDAC isoforms, PMC Biophysics 5, 1-4.
  • [87] Opaz, F., Punge, A., Bückers, J., Hoopmann, P., Kastrup, L., Hell, S. W., and Rizzoli, S. O. (2010) Limited Intermixing of Synaptic Vesicle Components upon Vesicle Recycling, Traffic 11, 800-812. [Crossref]
  • [88] Reisinger, E., Bresee, C., Neef, J., Nair, R., Reuter, K., Bulankina, A., Nouvian, R., Koch, M., Bückers, J., Kastrup, L., Roux, I., Petit, C., Hell, S. W., Brose, N., Rhee, J., Kügler, S., Brigande, J. V., and Moser, T. (2011) Probing the Functional Equivalence of Otoferlin and Synaptotagmin 1 in Exocytosis, The Journal of Neuroscience 31, 4886-4895.
  • [89] Blom, H., Rönnlund, D., Scott, L., Spicarova, Z., Rantanen, V., Widengren, J., Aperia, A., and Brismar, H. (2012) Nearest Neighbor Analysis of Dopamine D1 Receptors and Na1-K1-ATPases in Dendritic Spines Dissected by STED Microscopy, Microsc Res Tech 75, 220-228.
  • [90] Bückers, J., Wildanger, D., Vicidomini, G., Kastrup, L., and Hell, S. W. (2011) Simultaneous multilifetime multi-color STED imaging for colocalization analyses, Opt Express 19, 3130-3143.[Crossref]
  • [91] Willig, K. I., Stiel, A. C., Brakemann, T., Jakobs, S., and Hell, S. W. (2011) Dual-Label STED Nanoscopy of Living Cells Using Photochromism, Nano Lett 11, 3970-3973.[Crossref]
  • [92] Westphal, V., Rizzoli, S. O., Lauterbach, M. A., Kamin, D., Jahn, R., and Hell, S. W. (2008) Video- Rate Far-Field Optical Nanoscopy Dissects Synaptic Vesicle Movement, Science 320, 246-249.[Crossref]
  • [93] Westphal, V., Lauterbach, M. A., Di Nicola, A., and Hell, S. W. (2007) Dynamic far-field fluorescence nanoscopy, New J Phys 9, 435.[Crossref]
  • [94] Bingen, P., Reuss, M., Engelhardt, J., and Hell, S. W. (2011) Parrallelized STED fluorescence nanoscopy, Opt Express 19, 23716-23726.[Crossref]
  • [95] Hofmann, M., Eggeling, C., Jakobs, S., and Hell, S. W. (2005) Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins, PNAS 102, 17565-17569.[Crossref]
  • [96] Hell, S. W., Jakobs, S., and Kastrup, L. (2003) Imaging and writing at the nanoscale with focused visible light through saturable optical transitions, Appl Phys A 77, 859-860.[Crossref]
  • [97] Grotjohann, T., Testa, I., Leutenegger, M., Bock, H., Urban, N. T., Lavoie-Cardinal, F., Willig, K. I., Eggeling, C., Jakobs, S., and Hell, S. W. (2011) Diffraction-unlimited all-optical imaging and writing with a photochromic GFP, Nature 478, 204-208.[Crossref]
  • [98] Brakemann, T., Stiel, A. C., Weber, G., Andresen, M., Testa, I., Grotjohann, T., Leutenegger, M., Plessmann, U., Urlaub, H., Eggeling, C., Wahl, M., Hell, S. W., and Jakobs, S. (2011) A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching, Nat Biotechnol 29, 942-947.[Crossref]
  • [99] Testa, I., Urban, N. T., Jakobs, S., Eggeling, C., Willig, K. I., and Hell, S. W. (2012) Nanoscopy of Living Brain Slices with Low Light Levels, Neuron 75, 992-1000.[Crossref]
  • [100] Chmyrov, A., Keller, J., Grotjohann, T., Ratz, M., d’Este, E., Jakobs, S., Eggeling, C., and Hell, S. W. (2013) Nanoscopy with more than 100,000 ‘doughnuts’, Nat Methods 10, 737-740.
  • [101] Gould, T. J., Myers, J. R., and Bewersdorf, J. (2011) Total internal reflection STED microscopy, Opt Express 19, 13351-13357.[Crossref]
  • [102] Leutenegger, M., Ringemann, C., Lasser, T., Hell, S. W., and Eggeling, C. (2012) Fluorescence correlation spectroscopy with a total internal reflection fluorescence STED microscope (TIRF-STED-FCS), Opt Express 20, 5243-5263.[Crossref]
  • [103] Li, Q., Wu, S. S. H., and Chou, K. C. (2009) Subdiffraction-Limit Two-Photon Fluorescence Microscopy for GFP-Tagged Cell Imaging, Biophys J 97, 3224-3228.[Crossref]
  • [104] Klar, T. A., Jakobs, S., Dyba, M., Egner, A., and Hell, S. W. (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission, PNAS 97, 8206-8210.[Crossref]
  • [105] Harke, B., Keller, J., Ullal, C. K., Westphal, V., Schoenle, A., and Hell, S. W. (2008) Resolution scaling in STED microscopy, Opt Express 16, 4154-4162.[Crossref]
  • [106] Harke, B., Ullal, C. K., Keller, J., and Hell, S. W. (2008) Three-Dimensional Nanoscopy of Colloidal Crystals, Nano Lett 8, 1309-1313.[Crossref]
  • [107] Dyba, M., and Hell, S. W. (2002) Focal spots of size lambda/23 open up far-field florescence microscopy at 33 nm axial resolution, Phys Rev Lett 88, 163901.[Crossref]
  • [108] Dyba, M., Jakobs, S., and Hell, S. W. (2003) Immunofluorescence stimulated emission depletion microscopy, Nat Biotechnol 21, 1303-1304.[Crossref]
  • [109] Hell, S. W., Schmidt, R., and Egner, A. (2009) Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses, Nat Photonics 3, 381-387.[Crossref]
  • [110] Schmidt, R., Wurm, C. A., Punge, A., Egner, A., Jakobs, S., and Hell, S. W. (2009) Mitochondrial Cristae Revealed with Focused Light, Nano Lett 9, 2508-2510.[Crossref]
  • [111] Friedrich, M., Gan, Q., Ermolayev, V., and Harms, G. S. (2011) STED-SPIM: Stimulated Emission Depletion Improves Sheet Illumination Microscopy Resolution, Biophys J 100, L43-L45.
  • [112] Kastrup, L., Blom, H., Eggeling, C., and Hell, S. W. (2005) Fluorescence Fluctuation Spectroscopy in Subdiffraction Focal Volumes, Phys Rev Lett 94, 178104.[Crossref]
  • [113] Blom, H., Kastrup, L., and Eggeling, C. (2006) Fluorescence Fluctuation Spectroscopy in Reduced Detection Volumes, Curr Pharm Biotechnol 7, 51-66.[Crossref]
  • [114] Eggeling, C., Ringemann, C., Medda, R., Schwarzmann, G., Sandhoff, K., Polyakova, S., Belov, V. N., Hein, B., von Middendorff, C., Schonle, A., and Hell, S. W. (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell, Nature 457, 1159-U1121.[Crossref]
  • [115] Ringemann, C., Harke, B., Middendorff, C. V., Medda, R., Honigmann, A., Wagner, R., Leutenegger, M., Schoenle, A., Hell, S., and Eggeling, C. (2009) Exploring single-molecule dynamics with fluorescence nanoscopy, New J Phys 11, 103054.[Crossref]
  • [116] Mueller, V., Ringemann, C., Honigmann, A., Schwarzmann, G., Medda, R., Leutenegger, M., Polyakova, S., Belov, V. N., Hell, S. W., and Eggeling, C. (2011) STED nanoscopy reveals molecular details of cholesterol- and cytoskeletonmodulated lipid interactions in living cells, Biophys J 101, 1651-1660.[Crossref]
  • [117] Eggeling, C. (2012) STED-FCS Nanoscopy of Membrane Dynamics, In Fluorescent Methods to Study Biological Membranes (Mely, Y., and Duportail, G., Eds.), pp 291-309 Springer-Verlag, Berlin.
  • [118] Mueller, V., Honigmann, A., Ringemann, C., Medda, R., Schwarzmann, G., and Eggeling, C. (2013) FCS in STED Microscopy: Studying the Nanoscale of Lipid Membrane Dynamics, In Methods Enzymol (Tetin, S. Y., Ed.), pp 1-38, Elsevier, Burlington: Academic Press.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_nbi-2013-0001
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.