Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2014 | 2 | 1 |

Article title

Laminin- and basement membranepolycaprolactone blend nanofibers as a scaffold for regenerative medicine


Title variants

Languages of publication



Mimicking one or more components of the
basement membrane (BM) holds great promise for
overcoming insufficiencies in tissue engineering
therapies. We have electrospun laminin nanofibers (NFs)
isolated from the murine Engelbreth-Holm Swarm (EHS)
tumor and evaluated them as a scaffold for embryonic
stem cell culture. Seeded human embryonic stem cells
were found to better maintain their undifferentiated,
colony environment when cultured on laminin NFs
compared to laminin mats, with 75% remaining
undifferentiated on NFs. Mouse embryonic stem cells
cultured on 10% laminin-polycaprolactone (PCL) NFs
maintained their colony formation for twice as long
without passage compared to those on PCL or gelatin
substrates. In addition, we have established a protocol
for electrospinning reconstituted basement membrane
aligned (RBM)-PCL NFs within 10° of angular deviation.
Neuron-like PC12 cells show significantly greater
attachment (p < 0.001) and percentage of neuriteextending
cells in vitro on 10% RBM-PCL NFs when
compared to 1% and 0% RBM-PCL NFs (p < 0.015 and p
< 0.001, respectively). Together, these results implicate
laminin- and RBM-PCL scaffolds as a promising
biomimetic substrate for regenerative medicine







Physical description


1 - 1 - 2014
1 - 9 - 2014
4 - 2 - 2014


  • University of Virginia Department of Biomedical Engineering,
    Charlottesville, VA 22903, USA
  • University of Virginia Department of Biomedical Engineering,
    Charlottesville, VA 22903, USA
  • Georgia Institute of Technology and Emory University
    Department of Biomedical Engineering, Atlanta, Georgia 30332, USA
  • University of Virginia Department of Biomedical Engineering,
    Charlottesville, VA 22903, USA
  • University of Virginia Department of Biomedical Engineering,
    Charlottesville, VA 22903, USA
  • Old Dominion University School of Medical Diagnostic
    & Translational Sciences, Norfolk, VA 23529, USA
  • Georgia Institute of Technology and Emory University
    Department of Biomedical Engineering, Atlanta, Georgia 30332, USA


  • [1] Abrams GA, Schaus SS, Goodman SL, Nealey PF, Murphy CJ.Nanoscale topography of the corneal epithelial basementmembrane and Descemet’s membrane of the human. Cornea.2000; 19(1):57-64.[PubMed][Crossref]
  • [2] Beachley V, Wen X. Polymer nanofibrous structures:Fabrication, biofunctionalization, and cell interactions.Progress in Polymer Science. 2010; 35:868-892.[Crossref][WoS]
  • [3] Flemming RG, Murphy CJ, Abrams GA, Goodman SL, Nealy PF.Effects of synthetic micro- and nano-structured surfaces on cellbehavior. Biomaterials. 1999; 20(6):573-588.[PubMed][Crossref]
  • [4] Lee CH, Shin HJ, Cho IH, Kang, YM, Kim IA, Park KD, et al.Nanofiber alignment and direction of mechanical strain affectthe ECM production of human ACL fibroblast. Biomaterials2005; 26(11):1261-1270.[PubMed][Crossref]
  • [5] Mo XM, Xu CY, Kotaki M, Ramakrishna S. Electrospun P(LLA-CL)nanofiber: a biomimetic extracellular matrix for smooth musclecell and endothelial cell proliferation. Biomaterials 2004;25:1883-1890.[Crossref][PubMed]
  • [6] Yeung T, George PC, Flanagan LA, Marg B, Ortiz M, FunakiM, et al. Effects of substrate stiffness on cell morphology,cytoskeletal structure, and adhesion. Cytoskeleton 2005; 60(1)23-34.
  • [7] Loesberg WA, Riet J, Van Delft FCMJM, Schon P, Figdor CG,Speller S, et al. The threshold at which substrate nanogroovedimensions may influence fibroblast alignment and adhesion.Biomaterials 2007; 28(27):3944-3951.[Crossref][WoS][PubMed]
  • [8] O’Brien FJ, Harley BA, Yannas IV, Gibson LJ. The effect of poresize on cell adhesion in collagen-GAG scaffolds. Biomaterials2005; 26(4):433-441.
  • [9] Scheppke L, Murphy EA, Zarpellon A, Hofmann JJ, MerkulovaA, Shields DS, Weis SM, Byzova TV, Ruggeri ZM, Iruela-ArispeML, Cheresh DA. Notch promotes vascular maturation byinducing integrin-mediated smooth muscle cell adhesion tothe endothelial basement membrane. Blood. 2012; 119(9):2149-2158.[PubMed][WoS][Crossref]
  • [10] Neal RA, McClugage SG, Link MC, Sefcik LS, Ogle RC, BotchweyEA. Laminin nanofiber meshes that mimic morphologicalproperties and bioactivity of basement membranes. TissueEngineering Part C:Methods. 2009; 15(1):11-21.[Crossref][WoS]
  • [11] Neal RA, Tholpady SS, Foley PL, Swami N, Ogle RC, BotchweyEA. Alignment and composition of laminin-polycaprolactonenanofiber blends enhance peripheral nerve regeneration.Journal of Biomedical Materials, Part A. In press.
  • [12] Tinois E, Tiollier J, Gaucherand M, Dumas H, Tardy M, ThivoletJ. In vitro and post-transplantation differentiation of humankeratinocytes grown on the human type IV collagen film of abilayered dermal substitute. Experimental Cell Research. 1991;193(2):310-9.[Crossref][PubMed]
  • [13] Johnson G, Moore SW. Identification of a structural site onacetylcholinesterase that promotes neurite outgrowth andbinds laminin-1 and collagen IV. Biochemical and BiophysicalResearch Communications. 2004; 319(2):448-55.[Crossref][PubMed]
  • [14] Yap WT, Salvay DM, Silliman MA, Zhang X, Bannon ZG, KaufmanDB, Lowe W, Shea LD. Collagen IV-modified scaffolds improveislet survival and function and reduce time to euglycemia.Tissue Engineering A. 2013; epub ahead of print.
  • [15] Martin MJ, Muotri A, Gage F, Varki A. Human embryonic stemcells express immunogenic nonhuman sialic acid. NatureMedicine 2005; 11(2):228-232.[PubMed][Crossref]
  • [16] Cho M, Lee EJ, Nam H, Yang JK, Cho J, Lim JM, et al. Humanfeeder layer system derived from umbilical cord stromalcells for human embryonic stem cells. Fertil Steril 2010;93(8):2525-2531.[Crossref][PubMed][WoS]
  • [17] Unger C, Felldin U, Nordenskjold A, Dilber MS, Hovatta O.Derivation of human skin fibroblast lines for feeder cells ofhuman embryonic stem cells. Curr Protoc Stem Cell Biol 2008;Chapter 1: Unit iC. 7.
  • [18] Lai Y, Sun Y, Skinner CM, Son EL, Lu Z, Tuan RS, Jilka RL, Ling J,Chen XD. Reconstitution of marrow-derived extracellular matrixex vivo: A robust culture system expanding large-scale highlyfunctional human mesenchymal stem cells. Stem Cells andDevelopment. 2010; 19(7): 1095-1107.[Crossref]
  • [19] Benton G., Kleinman HK, George J, Amaoutova I. Multiple usesof basement membrane-like matrix (BME/Matrigel) in vitro andin vivo with cancer cells. Int.J. Cancer. 2011; 128; 1751-1757.[WoS]
  • [20] Kleinman HK , McGarvey ML, Liotta LA, Robey PG, TryggvasonK, Martin GR. Isolation and characterization of type IVprocollagen, laminin and heparin sulfate proteoglycan from theEHS sarcoma. Biochemistry 1982; 21:6188.[Crossref]
  • [21] Kleinman HK, McGarvey ML, Hassel JR, Martin GR. Formationof supramolecular complex is involved in the reconstitutionof basement membrane components. Biochemistry 1983;22:4969.[PubMed][Crossref]
  • [22] Kleinman HK. Preparation of basement membrane componentsfrom EHS tumors. Current Protocols in Cell Biology. 2001; 10:Unit 10.2.[PubMed]
  • [23] Rho KS, Jeong L, Lee G, Seo BM, Park YJ, Hong SD, et al..Electrospinning of collagen nanofibers: effects on the behaviorof normal human keratinocytes and early-stage wound healing.Biomaterials. 2006; 27:1452.[PubMed][Crossref]
  • [24] Li D, Wang YL, Xia YN. Electrospinning of polymeric and ceramicnanofibers as uniaxially aligned arrays. Nano Letters. 2003; 3(8):1167-1171.[Crossref]
  • [25] Kakade MV, Givens S, Gardner K, Lee KH, Chase DB, RaboltJF. Electric field induced orientation of polymer chains inmacroscopically aligned electrospun polymer nanofibers. J AmChem Soc. 2007; 129(10):2777-82.[Crossref][PubMed]
  • [26] Chaurey V, Chiang P, Polanco C, Su Y, Chou C, Swami N.Interplay of electrical forces for alignment of sub-100 nmelectrospun nanofibers at insulator gap collectors. Langmuir.2010; 26(24):19022–19026.[Crossref][WoS][PubMed]
  • [27] Xie J, MacEwan MR, Schwartz AG, Xia Y. Electrospun nanofibersfor neural tissue engineering. Nanoscale. 2010; 2: 35-44.[PubMed][WoS][Crossref]
  • [28] Subramanian A, Krishnan UM, Sethuraman S. Fabricationof uniaxially aligned 3D electrospun scaffolds for neuralregeneration. Biomed. Mater. 2011; 6(2): 025004.[Crossref][WoS]
  • [29] Rodin S, Domogatskaya A, Strom S, Hansson EM, ChienKR, Inzunza J, et al. Long-term self-renewal of humanpluripotent stem cells on human recombinant laminin-511. NatBiotechnology. 2010; 28(6):611-615.[WoS]
  • [30] Xie J, Willerth SM, Li X, Macewan MR, Rader A, Sakiyama-ElbertSE, et al. The differentiation of embryonic stem cells seededon electrospun nanofibers into neural lineages. Biomaterials2009; 30(3):354-362.[PubMed][Crossref]
  • [31] Lim SH, Liu XY, Song H, Yarema KJ, Mao HQ. The effect ofnanofiber-guided cell alignment on the preferential differentiationof neural stem cells. Biomaterials. 2010; 31: 9031-9039.[Crossref][WoS][PubMed]
  • [32] Cho YI, Choi JS, Jeong SY, Yoo HS. Nerve growth factor(NGF)-conjugated electrospun nanostructures withtopographical cues for neuronal differentiation of mesenchymalstem cells. Acta Biomaterialia. 2010; 6; 4725-4733.[PubMed][WoS][Crossref]
  • [33] Prabhakaran MP, Jayarama RV, Ramakrishna S. Mesenchymalstem cell differentiation to neuronal cells on electrospunnanofibrous substrates for nerve tissue engineering.Biomaterials 2009; 30(28): 4996-5003.[PubMed][Crossref]
  • [34] Nie H, He A, Zheng J, Xu S, Li J, Han CC. Effects of chainconformation and entanglement on the electrospinning of purealginate. Biomacromolecules. 2008 May; 9(5):1362-5.[PubMed][Crossref][WoS]
  • [35] de Guzman RC, Loeb JA, VandeVord PJ. Electrospinning ofmatrigel to deposit a basal lamina-like nanofiber surface. JBiomater Sci Polym Ed. 2010; 21(8-9):1081-101.[WoS]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.