PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 1 | 48-57
Article title

Toxicity and stability of silver nanoparticles to the green alga Pseudokirchneriella subcapitata in boreal freshwater samples
and growth media

Content
Title variants
Languages of publication
EN
Abstracts
EN
The toxicity of silver nanoparticles (AgNPs) to green alga Pseudokirchneriella subcapitata was evaluated in standard nutrient medium
(ISO 8692), lake water samples from an oligotrophic and an eutrophic
lake, and in lake waters supplemented with the standard nutrient medium.
Prior to toxicity testing the agglomeration of polyvinylpyrrolidone (PVP) and
starch-coated AgNPs was studied in each test medium. Agglomeration
was studied by determining the hydrodynamic diameter (HDD). The HDDs
for the PVP- and starch-capped AgNP dispersions in deionized water were
40 and 175 nm respectively, indicating the presence of agglomerates. The
HDDs of AgNPs remained stable throughout the exposure time in all media
used for the toxicity tests. The algae growth inhibition test was performed
as a microplate modification of the ISO method using fluorescence
detection. The effect of concentration at a 50% inhibition value for PVPcoated
AgNPs in standard medium was 115 ± 3 μg/L, and for starchcoated
AgNPs 51 ± 32 μg/L. The eutrophic freshwater conditions
suppressed the toxicity of the PVP- coated AgNPs, but not the starchcoated
NPs. This finding emphasizes the importance of using different
AgNPs and natural waters in assessing the environmental risks of silver
nanoparticles.
Publisher
Year
Volume
1
Pages
48-57
Physical description
Dates
accepted
29 - 05 - 2013
online
29 - 07 - 2013
received
4 - 01 - 2013
References
  • [1] S.N. Luoma. Silver nanotechnologies and the environment:old problems or new challenges. Project on EmergingNanotechnologies, 15 (2008).
  • [2] B. Naumann, M. Eberius, K. Appenroth. Growth rate baseddose-response relationships and EC-values of ten heavymetals using the duckweed growth inhibition test (ISO20079) with Lemna minor L. clone St. J. Plant. Phys., 164,1656-1664 (2007).
  • [3] Y. Yu-Nam, J.R. Lead. Manufactured nanoparticles: anoverview of their chemistry, interactions and potentialenvironmental implications. Sci. Tot. Environ., 400, 396-414(2008).[WoS]
  • [4] C. Marambio-Jones, E.M.V. Hoek. A review of the antibacterialeffects of silver nanomaterials and potential implications forhuman health and the environment. J. Nanopart. Res., 12,1531-1551 (2010).[Crossref][WoS]
  • [5] K.H. Domsch. Effects of pesticides and heavy metals onbiological processes in soil. Plant Soil., 76, 367-378 (1984).
  • [6] Q. Feng, J. Wu, G.Q. Chen, F.Z. Cui, T.N. Kim, J. Kim. Amechanistic study of the antibacterial effect of silver ions onEscherichia coli and Staphylococcus aurelius. J. Biomed.Mater Res., 52, 662-668 (2000).
  • [7] L. Geranio, M. Heuberger, B, Nowack. The Behaviour ofsilver nanotextiles during washing. Environ. Sci. Technol., 43,8113-8118 (2009).[Crossref][PubMed][WoS]
  • [8] T.M. Benn, P. Westerhoff. Nanoparticle silver released intowater from commercially available sock fabrics. Environ. Sci.Technol., 42, 4133-4139 (2008).[PubMed][Crossref][WoS]
  • [9] R. Kaegi, B. Sinnet, S. Zuleeg, H. Hagendorfer, E. Mueller,R. Vonbank, M. Boller, M. Burkhardt. Release of silvernanoparticles from outdoor facades. Environ. Poll., 158,2900-2905 (2010).
  • [10] E. Navarro, F. Piccapietra, B. Wagner, F. Marconi, R. Kaegi, N.Odzak, et al. Toxicity of silver nanoparticles to Chlamydonasreinhardtii. Environ. Sci. Technol., 42, 8959-8964 (2008).[PubMed][WoS][Crossref]
  • [11] P.V Asharani, Y.L. Wu, Z. Gong, S. Valiyaveettil. Toxicity ofsilver nanoparticles in zebrafish models. Nanotechnology, 19,255102-255109 (2008).[WoS][Crossref][PubMed]
  • [12] C. Levard, B.C. Reinsch, F.M Michel, C. Ournahi, G.V. Lowry,G.E.jr. Brown. Sulfidation processes of PVP-coated silvernanoparticles in aqueous solution: Impact on dissolutionrate. Environ. Sci. Technol., 45, 5260-5266 (2011).[Crossref][WoS]
  • [13] O. Choi, Z. Hu. Size dependent and reactive oxygen speciesrelated nanosilver toxicity to nitrifying bacteria. Environ. Sci.Technol., 42, 4583-4588 (2008).[WoS][Crossref]
  • [14] S. Pal, Y.K. Tak, Y.M. Song. Does the antimicrobial activity ofsilver nanoparticles depend on the shape of the nanoparticle?A study of the gram-negative bacterium Escherichia coli.Appl. Environ. Microbiol., 73, 1712-1720 (2007).[WoS]
  • [15] A.M El Badawy, T.P. Luxton, G. S. Rendahandi, K.G.Scheckel, M.T. Suidann, T.M. Thabet. Impact of environmentalconditions (pH, ionic strength, and electrolyte type) on thesurface charge and aggregation of silver nanoparticlessuspensions. Environ. Sci. Technol., 44, 1260-1266 (2010).[WoS][Crossref]
  • [16] L. Kvitek, A. Panáček, J. Soukupová, M. Kolár, R. Večeřová,R. Prucek R, et al. Effects of surfactants and polymers onstability and antibacterial activity of silver nanoparticles (NPs).J. Phys. Chem., 112, 5825-5834 (2008).[WoS]
  • [17] R.D. Handy, N. van den Brinck, M. Chappel, M. Mühling,R. Behr, M. Dušinská, et al. Practical considerations for conducting ecotoxicity test methods with manufacturednanomaterials: What have we learnt so far? Ecotox., 21, 933-972 (2012).[Crossref]
  • [18] M. Sillanpää, T. Paunu, P. Sainio. Aggregation and depositionof engineered TiO2 nanoparticles in natural fresh andbrackish waters. J. Phys. Conf. Ser., 304, , 012018 (2011).
  • [19] R.F. Domingos, M.A. Baalousha, Y. Ju-Nam, M.M. Reid,N. Tufenkji, J.R. Lead, K.J. Wilkinson. Characterizingmanufactured nanoparticles in the environment: multimethoddetermination of particle sizes. Environ. Sci. Technol., 43,7277-7284 (2009).[Crossref][WoS]
  • [20] J. Liu, R.B. Hurt. Ion release kinetics and particle persistencein aqueous nano-silver colloids. Environ. Sci. Technol., 44,2169-2175 (2010).[WoS][Crossref]
  • [21] I. Römer, T.A. White, M. Baalousha, K. Chipman, M.R. Viant,J.R. Lead. Aggregation and dispersion of silver nanoparticlesin exposure media for aquatic toxicity tests. J. Chromatogr.A, 1218, 4226-4233 (2011).[WoS]
  • [22] M. Tejamaya, I. Römer, R.C. Merrifield, J.R. Lead. Stability ofcitrate, PVP, and PEG coated silver nanoparticles in ecotoxicologymedia. Environ. Sci. Technol., 46, 7011-7017 (2012).[WoS][PubMed][Crossref]
  • [23] J. McLaughlin, J.J. Bonzongo. Effects of natural waterchemistry on nanosilver behaviour and toxicity to Ceriodaphnia dubia and Pseudokirchneriella subcapitata.Environ .Tox. Chem., 31, 168-175 (2012).[WoS][Crossref]
  • [24] R.J. Griffith, J. Luo, J. Gao, J. Bonzongo, D.S. Barber. Effectsof particle composition and species on toxicity of metallicnanomaterials in aquatic organism. Environ. Tox. Chem., 27,1972-1978 (2012).[WoS]
  • [25] A. Oukarrum, S. Bras, F, Perreault, R, Popovic. Inhibitoryeffects of silver nanoparticles in two green algae, Chlorellavulgaris and Dunaliella tertiolecta. Ecotoxicol. Environ. Saf.,78, 80-85 (2011).
  • [26] J. Gao, S. Youn, A. Hovsepyan, V.L. Llaneza, Y. Wang, G.Bitton, et al. Dispersion and toxicity of selected manufacturednanomaterials in natural river water samples: Effects of waterchemical composition. Environ. Sci. Technol., 43, 3322-3328(2009).[WoS][Crossref]
  • [27] D. Lee, C. Fortin, P.G.C. Campbell. Contrasting effectsof chloride on the toxicity of silver to two green algae,Pseudokirchneriella subcapitata and Chlamydomon asreinhardtii. Aquat. Toxicol., 75, 127-135 (2005).
  • [28] A.J. Kennedy, M.S. Hull, A.J. Bednar, J.D. Goss, C.G. Goss,J.L. Bouldin, et al. Fractionating nanosilver: Importance fordetermining toxicity to aquatic test organisms. Environ. Sci.Technol., 44, 9571-9577 (2010).[WoS][Crossref]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_nanome-2013-0004
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.