Preferences help
enabled [disable] Abstract
Number of results
2013 | 1 | 40-47
Article title

Metal oxide particles catalyze photo-oxidation in environmental media

Title variants
Languages of publication
Metal oxide particles in the submicron and nanometer range endow a wide
range of consumer products with unique properties. The widespread use
of such products raises concerns on potential toxicity of these materials to
man and the environment. Besides their size, the photo-catalytic properties
of metal oxide particles are of particular concern. By utilizing molecular
probes with tailored optical properties, we investigated the photo-catalytic
properties of seven TiO2 (anatase), ZnO and CeO2 manufactured particles in
environmental media. Controlled experiments confirmed that the particles
catalyzed photo-oxidation and photo-production of reactive oxygen
species (ROS), while no ROS generation was observed when the ionic
form of the materials was used in place of the particles. While affecting
their aggregation and sedimentation, the type of media was not found to
strongly influence the photo-catalytic behavior of the particles. Within the
size range that was investigated, ZnO particles resulted in the highest
production of ROS, while anatase particles possessed the highest oxidative
ability. Possible explanations of such behavior are suggested.
Physical description
02 - 04 - 2013
21 - 01 - 2013
21 - 03 - 2013
  • A. Fujishima, X. Zhang, D.A. Tryk. TiO2 photocatalysis andrelated surface phenomena. Surf. Sci. Rep. 63, 515-582(2008).[WoS]
  • C.O. Robichaud, D. Tanzil, U. Weilenmann, M.R.Wiesner. Relative Risk Analysis of Several ManufacturedNanomaterials: An Insurance Industry Context. Environ. Sci.Technol. 39, 8985-8994 (2005).
  • N.C. Mueller, B. Nowack. Exposure Modeling of EngineeredNanoparticles in the Environment. Environ. Sci. Technol. 42,4447-4453 (2008).[PubMed][WoS][Crossref]
  • J.D. Judy, J.M. Unrine, P.M. Bertsch. Evidence forBiomagnification of Gold Nanoparticles within a TerrestrialFood Chain. Environ. Sci. Technol. 45, 776-781 (2010).[PubMed][WoS]
  • K. Tiede, M. Hassellöv, E. Breitbarth, Q. Chaudhry, A.B.A. Boxall.Considerations for environmental fate and ecotoxicity testingto support environmental risk assessments for engineerednanoparticles. J. Chromatogr. A 1216, 503-509 (2009).[WoS]
  • A. Kahru, H.-C. Dubourguier. From ecotoxicology tonanoecotoxicology. Toxicology 269, 105-119 (2010).[WoS]
  • D. Darr, I. Fridovich. Free Radicals In Cutaneous Biology. J.Invest. Dermatol. 102, 671-675 (1994).
  • M.A. Maurer-Jones, J.R. Christenson, C.L. Haynes. TiO2nanoparticle-induced ROS correlates with modulatedimmune cell function. J. Nanopart. Res. 14, (2012).[WoS]
  • S.-R. Chae, E.M. Hotze, M.R. Wiesner. Evaluation of theOxidation of Organic Compounds by Aqueous Suspensionsof Photosensitized Hydroxylated-C60 Fullerene Aggregates.Environ. Sci. Technol. 43, 6208-6213 (2009).[WoS]
  • S.J. Xiong, S.J. George, Z.X. Ji, S.J. Lin, H.Y. Yu, R.Damoiseaux, et al. Size of TiO2 nanoparticles influences theirphototoxicity: an in vitro investigation. Arch. Toxicol. 87, 99-109 (2013).[WoS]
  • H.B. Ma, P.L. Williams, S.A. Diamond. Ecotoxicity ofmanufactured ZnO nanoparticles - A review. Environ. Pollut.172, 76-85 (2013).[WoS]
  • A. Nel, T. Xia, L. Mädler, N. Li. Toxic Potential of Materials atthe Nanolevel. Science 311, 622-627 (2006).
  • N.J. Rogers, N.M. Franklin, S.C. Apte, G.E. Batley, B.M.Angel, J.R. Lead, et al. Physico-chemical behaviour andalgal toxicity of nanoparticulate CeO2 in freshwater. Environ.Chem. 7, 50-60 (2009).[WoS]
  • M.M. Zou, Y.M. Kong, J. Wang, Q. Wang, Z.Q. Wang, B.X.Wang, et al. Spectroscopic analyses on ROS generationcatalyzed by TiO2, CeO2/TiO2 and Fe2O3/TiO2 underultrasonic and visible-light irradiation. Spectroc. Acta Pt.A-Molec. Biomolec. Spectr. 101, 82-90 (2013).[Crossref][WoS]
  • H. Ma, A. Brennan, S.A. Diamond. Photocatalytic reactiveoxygen species production and phototoxicity of titaniumdioxide nanoparticles are dependent on the solar ultravioletradiation spectrum. Environmental Toxicology and Chemistry31, 2099-2107 (2012).[WoS]
  • H. Ma, A. Brennan, S.A. Diamond. Phototoxicity of TiO2nanoparticles under solar radiation to two aquatic species:Daphnia magna and Japanese medaka. EnvironmentalToxicology and Chemistry 31, 1621-1629 (2012).[WoS]
  • K.D. Pickering, M.R. Wiesner. Fullerol-Sensitized Productionof Reactive Oxygen Species in Aqueous Solution. Environ.Sci. Technol. 39, 1359-1365 (2005).[PubMed][Crossref]
  • C.-Y. Chen, C.T. Jafvert. Photoreactivity of CarboxylatedSingle-Walled Carbon Nanotubes in Sunlight: Reactive Oxygen Species Production in Water. Environ. Sci. Technol.44, 6674-6679 (2010).[PubMed][Crossref][WoS]
  • J. Fabrega, R. Tantra, A. Amer, B. Stolpe, J. Tomkins, T. Fry,et al. Sequestration of Zinc from Zinc Oxide Nanoparticlesand Life Cycle Effects in the Sediment Dweller AmphipodCorophium volutator. Environ. Sci. Technol. 46, 1128-1135(2012).[Crossref][PubMed][WoS]
  • R. Tantra. Evaluation and Assignment of NanoparticleDispersion/Characterisation Methodologies, to be developedunder PROSPECT. NPL report AS 45 (2009).
  • S. Merouani, O. Hamdaoui, F. Saoudi, M. Chiha. Influence ofexperimental parameters on sonochemistry dosimetries: KIoxidation, Fricke reaction and H2O2 production. J. Hazard.Mater. 178, 1007-1014 (2010).[WoS]
  • M. Sutherland, B. Learmonth. The tetrazolium dyes MTSand XTT provide new quantitative assays for superoxideand superoxide dismutase. Free Radical Res. 27, 283-289(1997).
  • M.E. Bulina, D.M. Chudakov, O.V. Britanova, Y.G.Yanushevich, D.B. Staroverov, T.V. Chepurnykh, et al. Agenetically encoded photosensitizer. Nature Biotech. 24, 95-99 (2006).
  • H. Czili, A. Horváth. Applicability of coumarin fordetecting and measuring hydroxyl radicals generated byphotoexcitation of TiO2 nanoparticles. App. Cat. B Env. 81,295-302 (2008).
  • J. Jiang, G. Oberdorster, A. Elder, R. Gelein, P. Mercer, P.Biswas. Does nanoparticle activity depend upon size andcrystal phase? Nanotoxicology 2, 33-42 (2008).[WoS]
  • M.Y. Guo, A.M.C. Ng, F.Z. Liu, A.B. Djurisic, W.K. Chan, H.M.Su, et al. Effect of Native Defects on Photocatalytic Propertiesof ZnO. J. Phys. Chem. C 115, 11095-11101 (2011).
  • Y.C. Liao, C.S. Xie, Y. Liu, Q.W. Huang. Enhancement ofphotocatalytic property of ZnO for gaseous formaldehydedegradation by modifying morphology and crystal defect. J.Alloy. Compd. 550, 190-197 (2013).[WoS]
  • A. Asati, S. Santra, C. Kaittanis, S. Nath, J.M. Perez. Oxidase-Like Activity of Polymer-Coated Cerium Oxide Nanoparticles.Ang. Chem. Int. Ed. 48, 2308-2312 (2009).
  • B.A. Rzigalinski, K. Meehan, R.M. Davis, Y. Xu, W.C. Miles,C.A. Cohen. Radical nanomedicine. Nanomedicine 1, 399-412 (2006).
  • Y.C. Liao, C.S. Xie, Y. Liu, H. Chen, H.Y. Li, J. Wu. Comparisonon photocatalytic degradation of gaseous formaldehyde byTiO2, ZnO and their composite. Ceram. Int. 38, 4437-4444(2012).[WoS]
  • T. Berger, M. Sterrer, O. Diwald, E. Knozinger. Chargetrapping and photoadsorption of O-2 on dehydroxylatedTiO2 nanocrystals - An electron paramagnetic resonancestudy. ChemPhysChem 6, 2104-2112 (2005).
  • K.-i. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto.Quantum yields of active oxidative species formed on TiO2photocatalyst. J. Photochem. Photobiol. A 134, 139-142(2000).
  • A. Gomes, E. Fernandes, J.L.F.C. Lima. Fluorescence probesused for detection of reactive oxygen species. J. Biochem.Biophys. Methods 65, 45-80 (2005).
  • G. Bartosz. Use of spectroscopic probes for detection ofreactive oxygen species. Clin. Chim. Acta 368, 53-76 (2006).
  • N.W. Roehm, G.H. Rodgers, S.M. Hatfield, A.L. Glasebrook.An improved colorimetric assay for cell-proliferation andviability utilizing the tetrazolium salt XTT. J. Immunol. Methods142, 257-265 (1991).
  • U. Cernigoj, U.L. Stangar, P. Trebse, M. Sarakha.Determination of catalytic properties of TiO2 coatings usingaqueous solution of coumarin: Standardization efforts. J.Photochem. Photobiol. A 201, 142-150 (2009).[WoS]
  • N.M. Franklin, N.J. Rogers, S.C. Apte, G.E. Batley, G.E.Gadd, P.S. Casey. Comparative toxicity of nanoparticulateZnO, bulk ZnO, and ZnCl2 to a freshwater microalga(Pseudokirchneriella subcapitata): The importance of particlesolubility. Environ. Sci. Technol. 41, 8484-8490 (2007).[WoS]
  • W.H. Song, J.Y. Zhang, J. Guo, J.H. Zhang, F. Ding, L.Y. Li, etal. Role of the dissolved zinc ion and reactive oxygen speciesin cytotoxicity of ZnO nanoparticles. Toxicol. Lett. 199, 389-397 (2010).
  • T. Buerki-Thurnherr, L. Xiao, L. Diener, O. Arslan, C.Hirsch, X. Maeder-Althaus, et al. In vitro mechanistic studytowards a better understanding of ZnO nanoparticle toxicity.Nanotoxicology 2012 Mar 20, Epub ahead of print (2012).
  • M.Y. Guo, A.M.C. Ng, F. Liu, A.B. Djurisic, W.K. Chan.Photocatalytic activity of metal oxides-The role of holes andOH center dot radicals. Applied Catalysis B-Environmental107, 150-157 (2011).
  • M.D. Hernandez-Alonso, A.B. Hungria, A. Martinez-Arias, M.Fernandez-Garcia, J.M. Coronado, J.C. Conesa, et al. EPRstudy of the photoassisted formation of radicals on CeO2nanoparticles employed for toluene photooxidation. AppliedCatalysis B-Environmental 50, 167-175 (2004).
  • W.J. Sun, A. Luna-Velasco, R. Sierra-Alvarez, J.A. Field.Assessing protein oxidation by inorganic nanoparticles withenzyme-linked immunosorbent assay (ELISA). Biotechnol.Bioeng. 110, 694-701 (2013).[WoS]
  • L.K. Adams, D.Y. Lyon, P.J.J. Alvarez. Comparative ecotoxicityof nanoscale TiO2, SiO2, and ZnO water suspensions.Water Res. 40, 3527-3532 (2006).[Crossref]
  • Q.L. Wu, A. Nouara, Y.P. Li, M. Zhang, W. Wang, M. Tang,et al. Comparison of toxicities from three metal oxidenanoparticles at environmental relevant concentrations innematode Caenorhabditis elegans. Chemosphere 90, 1123-1131 (2013).[WoS]
  • D.W. Xiong, T. Fang, L.P. Yu, X.F. Sima, W.T. Zhu. Effectsof nano-scale TiO2, ZnO and their bulk counterparts onzebrafish: Acute toxicity, oxidative stress and oxidativedamage. Sci. Total Environ. 409, 1444-1452 (2011).[WoS]
  • M. Li, D.H. Lin, L.Z. Zhu. Effects of water chemistry onthe dissolution of ZnO nanoparticles and their toxicity toEscherichia coli. Environ. Pollut. 173, 97-102 (2013).[WoS]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.