PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 1 | 31-39
Article title

Influence of physicochemical parameters on stability
and performance of biosupported Pd nanocatalysts

Content
Title variants
Languages of publication
EN
Abstracts
EN
Sustainable production methods for catalytic palladium (Pd) nanoparticles
are currently being investigated due to their increasing use, limited
availability and price volatility. The bio-palladium (bio-Pd) method uses
bacteria as a producer and carrier of Pd nanoparticles. In this method,
Pd leaching results in economical loss and environmental risk. In this
study we therefore investigate the influence of different parameters on the
leaching process: temperature (4-21°C), medium (H2O or mineral medium),
pH (1–12), atmosphere (air, O2, N2, H2) and bacterial carrier. We show
leaching is an important phenomenon for biosupported Pd: 20% of the Pd
was released at 21°C in water after 100 days. Minimal leaching occurred at
lower temperatures, low pH and in an isotonic medium. Up to 5 times more
leaching was observed under anaerobic conditions (H2 or N2 atmosphere)
than under aerobic conditions (O2 or air atmosphere). The producer/carrier
Cupriavidus metallidurans leached up to 5% zerovalent Pd compared with
20% in Shewanella oneidensis. No loss of catalytic activity due to leaching
was observed when the leachate remained in the reaction medium. This
paper shows for the first time that release of Pd nanoparticles from the
bacterial carrier of bio-Pd can be significant particularly under anaerobic
conditions, at high temperature or high pH.
Keywords
Publisher
Year
Volume
1
Pages
31-39
Physical description
Dates
received
04 - 10 - 2012
accepted
05 - 2 - 2013
online
19 - 02 - 2013
References
  • Chaplin, B. P., Reinhard, M., Schneider, W. F., Schuth, C.,Shapley, J. R., Strathmann, T. J. and Werth, C. J. (2012).Critical Review of Pd-Based Catalytic Treatment of PriorityContaminants in Water. Environmental Science & Technology46(7): 3655-3670.[Crossref][PubMed][WoS]
  • De Corte, S., Hennebel, T., De Gusseme, B., Verstraete, W.and Boon, N. (2012). Bio-palladium: from metal recovery tocatalytic applications. Microbial Biotechnology 5(1): 5-17.[PubMed]
  • De Windt, W., Aelterman, P. and Verstraete, W. (2005).Bioreductive deposition of palladium (0) nanoparticleson Shewanella oneidensis with catalytic activity towardsreductive dechlorination of polychlorinated biphenyls.Environmental Microbiology 7(3): 314-325.[PubMed]
  • Hennebel, T., Simoen, H., De Windt, W., Verloo, M., Boon,N. and Verstraete, W. (2009). Biocatalytic dechlorinationof trichloroethylene with bio-palladium in a pilot-scalemembrane reactor. Biotechnology and Bioengineering102(4): 995-1002.[WoS][Crossref]
  • Hennebel, T., De Corte, S., Vanhaecke, L., Vanherck, K.,Forrez, I., De Gusseme, B., Verhagen, P., Verbeken, K., Vander Bruggen, B., Vankelecom, I., Boon, N. and Verstraete,W. (2010). Removal of diatrizoate with catalytically activemembranes incorporating microbially produced palladiumnanoparticles. Water Research 44(5): 1498-1506.[WoS][Crossref]
  • Rotaru, A. E., Jiang, W., Finster, K., Skrydstrup, T. and Meyer,R. L. (2012). Non-enzymatic palladium recovery on microbialand synthetic surfaces. Biotechnology and Bioengineering109(8): 1889-1897.[Crossref][WoS][PubMed]
  • Angeles-Wedler, D., Mackenzie, K. and Kopinke, F. D.(2009). Sulphide-induced deactivation of Pd/Al2O3 ashydrodechlorination catalyst and its oxidative regenerationwith permanganate. Applied Catalysis B-Environmental 90(3-4): 613-617.[WoS][Crossref]
  • Chaplin, B. P., Roundy, E., Guy, K. A., Shapley, J. R. andWerth, C. J. (2006). Effects of natural water ions and humicacid on catalytic nitrate reduction kinetics using an aluminasupported Pd-Cu catalyst. Environmental Science &Technology 40(9): 3075-3081.[PubMed][Crossref]
  • Keane, M. A. (2011). Supported Transition Metal Catalysts forHydrodechlorination Reactions. Chemcatchem 3(5): 800-821.[Crossref]
  • Vlarem II, Decision of the Flemish Government of June 1st1995 about general and sectoral definitions concerningenvironmental hygiene, appendix 5.3.1.
  • Peralta-Videa, J. R., Lopez, M. L., Narayan, M., Saupe,G. and Gardea-Torresdey, J. (2009). The biochemistry ofenvironmental heavy metal uptake by plants: Implicationsfor the food chain. Int. J. Biochem. Cell Biol. 41(8-9): 1665-1677.[Crossref][WoS]
  • Singh, A. and Prasad, S. M. (2011). Reduction of heavy metalload in food chain: technology assessment. Rev Environ SciBio 10(3): 199-214.[WoS][Crossref]
  • Chatterjee, R. (2008). The challenge of regulatingnanomaterials. Environmental Science & Technology 42(2):339-343.[PubMed][Crossref]
  • Hildebrand, H., Kuhnel, D., Potthoff, A., Mackenzie,K., Springer, A. and Schirmer, K. (2010). Evaluating thecytotoxicity of palladium/magnetite nano-catalysts intendedfor wastewater treatment. Environmental Pollution 158(1):65-73.[WoS][Crossref]
  • Speranza, A., Leopold, K., Maier, M., Taddei, A. R. andScoccianti, V. (2010). Pd-nanoparticles cause increasedtoxicity to kiwifruit pollen compared to soluble Pd(II).Environmental Pollution 158(3): 873-882.[Crossref][WoS]
  • Gauthier, D., Sobjerg, L. S., Jensen, K. M., Lindhardt, A.T., Bunge, M., Finster, K., Meyer, R. L. and Skrydstrup, T.(2010). Environmentally Benign Recovery and Reactivationof Palladium from Industrial Waste by Using Gram-NegativeBacteria. Chemsuschem 3(9): 1036-1039.[Crossref][WoS][PubMed]
  • Yong, P., Mikheenko, I. P., Deplanche, K., Redwood, M.D. and Macaskie, L. E. (2010). Biorefining of preciousmetals from wastes: an answer to manufacturing of cheapnanocatalysts for fuel cells and power generation via anintegrated biorefinery? Biotechnology Letters 32(12): 1821-1828.[Crossref][WoS][PubMed]
  • Sambrook, J., Fritsch, E. F. and Maniatis, T., Molecularcloning: a laboratory manual. 2nd ed.; New York, 1989.
  • Wang, Y. Y., Hammes, F., De Roy, K., Verstraete, W. andBoon, N. (2010). Past, present and future applications of flowcytometry in aquatic microbiology. Trends Biotechnol 28(8):416-424.[Crossref][PubMed][WoS]
  • Boon, N., Depuydt, S. and Verstraete, W. (2006). Evolutionaryalgorithms and flow cytometry to examine the parametersinfluencing transconjugant formation. Fems Microbiol Ecol55(1): 17-27.[PubMed][Crossref]
  • Ishida, R. (1969). Spectrophotometric Determination ofPalladium with Chromazurol S. Bull. Chem. Soc. Jpn. 42(4):1011-1016.[Crossref]
  • Ugwu, S. O. and Apte, S. P. (2004). The effect of buffers onprotein conformational stability. Pharmaceutical TechnologyMarch 2004(86-113.
  • Sintubin, L., De Gusseme, B., Van der Meeren, P., Pycke, B.F. G., Verstraete, W. and Boon, N. (2011). The antibacterialactivity of biogenic silver and its mode of action. AppliedMicrobiology and Biotechnology 91(1): 153-162.[Crossref]
  • Lenz, M., Kolvenbach, B., Gygax, B., Moes, S. and Corvini,P. F. X. (2011). Shedding Light on Selenium Biomineralization:Proteins Associated with Bionanominerals. Applied andEnvironmental Microbiology 77(13): 4676-4680.[PubMed][Crossref][WoS]
  • De Gusseme, B., Hennebel, T., Vanhaecke, L., Soetaert, M.,Desloover, J., Wille, K., Verbeken, K., Verstraete, W. and Boon,N. (2011). Biogenic Palladium Enhances Diatrizoate Removalfrom Hospital Wastewater in a Microbial Electrolysis Cell.Environmental Science & Technology 45(13): 5737-5745.[Crossref][WoS]
  • De Corte, S., Sabbe, T., Hennebel, T., Vanhaecke, L., DeGusseme, B., Verstraete, W. and Boon, N. (2012). Dopingof biogenic Pd catalysts with Au enables dechlorination ofdiclofenac at environmental conditions. Water Research46(8): 2718-2726.[PubMed][Crossref][WoS]
  • Heugebaert, T. S. A., De Corte, S., Sabbe, T., Hennebel,T., Verstraete, W., Boon, N. and Stevens, C. V. (2012). Biodeposited Pd/Au bimetallic nanoparticles as novel Suzukicatalysts. Tetrahedron Lett. 53(11): 1410-1412.[WoS][Crossref]
  • Wu, B., Shao, H. B., Wang, Z. P., Hu, Y. D., Tang, Y. J. J.and Jun, Y. S. (2010). Viability and Metal Reduction ofShewanella oneidensis MR-1 under CO2 Stress: Implicationsfor Ecological Effects of CO2 Leakage from Geologic CO2Sequestration. Environmental Science & Technology 44(23):9213-9218.[Crossref][WoS][PubMed]
  • Lloyd, J. R., Yong, P. and Macaskie, L. E. (1998). Enzymaticrecovery of elemental palladium by using sulfate-reducingbacteria. Applied and Environmental Microbiology 64(11):4607-4609.[PubMed]
  • Avoscan, L., Untereiner, G., Degrouard, J., Carriere, M.and Gouget, B. (2007). Uranium and selenium resistancein Cupriavidus metallidurans CH34. Toxicol. Lett.172(S157-S157.[WoS]
  • Ledrich, M. L., Stemmler, S., Laval-Gilly, P., Foucaud, L. andFalla, J. (2005). Precipitation of silver-thiosulfate complex andimmobilization of silver by Cupriavidus metallidurans CH34.BioMetals 18(6): 643-650.
  • Sendra, V., Cannella, D., Bersch, B., Fieschi, F., Menage, S.,Lascoux, D. and Coves, J. (2006). CopH from Cupriavidusmetallidurans CH34. A novel periplasmic copper-bindingprotein. Biochemistry 45(17): 5557-5566.
  • Hennebel, T., Van Nevel, S., Verschuere, S., De Corte, S.,De Gusseme, B., Cuvelier, C., Fitts, J. P., Van der Lelie, D.,Boon, N. and Verstraete, W. (2011). Palladium nanoparticlesproduced by fermentatively cultivated bacteria as catalystfor diatrizoate removal with biogenic hydrogen. AppliedMicrobiology and Biotechnology 91(5): 1435-1445.[WoS][Crossref]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_nanome-2013-0002
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.