Preferences help
enabled [disable] Abstract
Number of results
2013 | 1 | 23-30
Article title

TiO2-doped resorcinol–formaldehyde (RF) polymer and
carbon gels with photocatalytic activity

Title variants
Languages of publication
Resorcinol-formaldehyde (RF) polymer gels offer a relatively easy and
versatile route for incorporating metals into a carbon aerogel matrix.
The hybrid materials thus obtained are ideal candidates for applications
involving enhanced adsorption or catalysis. This paper presents a detailed
study of Ti-doped RF and carbon aerogels. The metal was introduced into
the system at three different stages of the preparation process: during
polymerization, by impregnation of the RF gel, or by impregnation of the
carbon gel. The structure and morphology of the samples are compared
using low temperature N2 adsorption, SEM, and small and wide angle
X-Ray scattering (SAXS/WAXS) methods. The TiO2-doped carbon aerogels
display photocatalytic activity in breaking down aromatic compounds.
Physical description
02 - 10 - 2012
11 - 02 - 2013
31 - 1 - 2013
  • C. Moreno-Castilla, F.J. Maldonado-Hódar, A.F. Pérez-Cadenas. Physicochemical surface properties of Fe, Co, Ni,and Cu-Doped monolithic organic aerogels. Langmuir, 19,5650−5655 (2003).
  • F.J. Maldonado-Hódar, C. Moreno-Castilla, A.F. Pérez-Cadenas. Surface morphology, metal dispersion, and poretexture of transition metal-doped monolithic carbon aerogelsand steam-activated derivatives. Microporous MesoporousMater., 69, 119−125 (2004).
  • R. Fu, M.S. Dresselhaus, G. Dresselhaus, B. Zheng, J. Liu,J. Satcher Jr., et al. The growth of carbon nanostructureson cobalt-doped carbon aerogels. J. Non-Cryst. Solids, 318,223−232 (2003).
  • F.J. Maldonado-Hódar, M.A. Ferro-García, J. Rivera-Utrilla,C. Moreno-Castilla. Synthesis and textural characteristicsof organic aerogels, transition-metal-containing organicaerogels and their carbonized derivatives. Carbon, 37,1199−1205 (1999).
  • C. Moreno-Castilla, F.J. Maldonado-Hódar, F. Carraso-Marin,E. Rodriguez-Castellón, Surface characteristics of titania/carbon composite aerogels. Langmuir, 18, 2295−2299(2002).[Crossref]
  • M. Sánchez-Polo, J. Rivera-Utrilla, J. Méndez-Díaz, J. López-Peñalver. Metal-doped carbon aerogels. new materials forwater treatments. Ind. Eng. Chem. Res., 47, 6001−6005(2008).[WoS]
  • M.L. Rojas-Cervantes, L. Alonso, J. Díaz-Terán, A.J. López-Peinado, R.M. Martín-Aranda, V. Gómez-Serrano. Basicmetal–carbons catalysts prepared by sol–gel method.Carbon; 42, 1575−1582 (2004).
  • N. Fu, R. Yoshizawa, M.S. Dresselhaus, G. Dresselhaus,J.H. Satcher Jr., T.F. Baumann. XPS study of copper-dopedcarbon aerogels. Langmuir, 18, 10100−10104 (2002).[Crossref]
  • O. Czakkel, E. Geissler, I.M. Szilágyi, E. Székely, K. László.Cu-doped resorcinol–formaldehyde (RF) polymer and carbonaerogels. J. Colloid Interface Sci., 337, 513−522 (2009).[WoS]
  • O. Czakkel, E. Geissler, A. Moussaïd, B. Koczka, K. László.Copper-containing resorcinol–formaldehyde networks.Microporous Mesoporous Mater., 126, 213−221 (2009).
  • O. Czakkel, B. Nagy, E. Geissler, K. László. Effect ofmolybdenum on the structure formation of resorcinolformaldehydehydrogels studied by coherent X-Rayscattering. J. Chem. Phys., 136, 234907 (2012).
  • K. Mogyorosi, I. Dékány, J.H. Fendler. Preparation andcharacterization of clay mineral intercalated titanium dioxidenanoparticles. Langmuir, 19, 2938−2946 (2003).[Crossref]
  • O. Czakkel, K. Marthi, E. Geissler, K. László. Influence ofdrying on the morphology of resorcinol–formaldehyde-basedcarbon gels. Microporous Mesoporous Mater., 86, 124−133(2005).
  • F.J. Maldonado-Hódar, C. Moreno-Castilla, J. Rivera-Utrilla.Synthesis, pore texture and surface acid–base characterof TiO2/carbon composite xerogels and aerogels and theircarbonized derivatives. Appl. Catal. A, 203, 151−159 (2000)
  • O. Czakkel, E. Székely, E. Geissler, K. László. Drying ofresorcinol–formaldehyde gels with CO2 medium. MicroporousMesoporous Mater., 148, 34−42 (2012).
  • S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area andPorosity, Academic Press, London, U.K., 1982.
  • S. Brunauer, P. Emmett, E. Teller. Adsorption of Gases inMultimolecular Layers. J. Am. Chem. Soc., 60, 309−319(1938).
  • J. Ménesi, L. Körösi, E. Bazsó, V. Zöllmer, A. Richardt, I.Dékány. Photocatalytic oxidation of organic pollutants ontitania–clay composites. Chemosphere, 70, 538−542 (2008).[PubMed][WoS]
  • N. Balázs, K. Mogyorósi, D.F. Srankó, A. Pallagi, T. Alapi, A.Oszkó, et al. The effect of particle shape on the activity ofnanocrystalline TiO2 photocatalysts in phenol decomposition.Appl. Catal. B-Environ., 84, 356−362 (2008).[WoS]
  • J. Rouquerol, F. Rouquerol, K. Sing, Adsorption by powdersand porous solids, Academic Press, New York, U.S.A., 1999.
  • W.H. Baur. Atomabstände und Bindungswinkel im Brookit,TiO2. Acta Cryst., 14, 214−216 (1961).
  • S.D. Mo, W.Y. Ching. Electronic and optical propertiesof three phases of titanium dioxide: Rutile, anatase, andbrookite. Phys. Rev. B, 51, 13023−13032 (1995).
  • H. Zhang, J.F. Banfield. Thermodynamic analysis of phasestability of nanocrystalline titania. J. Mater. Chem., 8,2073−2076 (1998).
  • G. Madrasw, B.J. McCoy, A. Navrotsky. Kinetic model fortio2 polymorphic transformation from anatase to rutile. J. Am.Ceram. Soc., 90, 250−255 (2007).
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.