Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 1 | 3-17

Article title

Non-Destructive Harvesting of Biogenic Gold Nanoparticles from Jatropha curcas Seed Meal and Shell Extracts and their Application as Bio-Diagnostic Photothermal Ablaters-Lending Shine to the Biodiesel Byproducts

Content

Title variants

Languages of publication

EN

Abstracts

EN
A potential non-destructive harvesting of gold nanoparticles (Au NPs) employing the seed
shell and detoxified-defatted seed meal aqueous extracts of Jatropha curcas is reported. The
reduction potential of the shell and meal extracts were tested at varied ratios with chloroauric
acid under physical parameters of increasing pressure and temperature. The optimal ratio
of chloroauric acid to seed meal/shell extracts was determined to be 1:1 under constant
shaking in water bath at 60ºC yielding nearly isotropic nanoparticles, which was confirmed
by UV-Vis spectroscopy, HRTEM and AFM analysis. With increasing concentrations (1:2, 1:3,
1:4) of reducing agents, temperature (121ºC) and pressure (12 lbs), anisotropy with respect
to particle shape and size increased in order. FT-IR, TGA and HRTEM provided evidence of
bio-capping of the nanoparticles with biomolecules present in the parent reducing sources.
The biocompatibility of these nanoparticles was tested on neuronal HCN-1A and brain cancer
glioma Gl-1 cell lines, which revealed their superior cyto-amiability when compared with
conventionally synthesized Au NPs. The biodiagnostic and photothermal ablation potential
of the Au NPs were also tested and affirmed with the luminescent signals recorded from the
cellular cytoplasm indicating the efficient internalization of these nanoparticles as well as the
apoptotic events encountered upon irradiating the cells with laser. Nearly 100% of the cells
underwent sudden apoptosis within 1 min of laser treatment, providing enough evidence
for the thermal ablation potential of the Au NPs. To support the claim of non-destructive
harvesting of nanoparticles, the protein and ash content of the seed meal and seed shell,
respectively, were analyzed before and after the aqueous extraction. Minimal loss in these
inherent characteristic potentials of the seed meal and shell emphasizes the sustainable
utilization of bio-resources achieved in this report.

Publisher

Year

Volume

1

Pages

3-17

Physical description

Dates

online
14 - 11 - 2012
received
20 - 7 - 2012
accepted
27 - 8 - 2012

Contributors

  • Bio-Nano Electronics Research Center, Toyo University, 2100, Kujirai,Kawagoe, Saitama, 3508585, Japan
author
  • Bio-Nano Electronics Research Center, Toyo University, 2100, Kujirai,Kawagoe, Saitama, 3508585, Japan
  • Bio-Nano Electronics Research Center, Toyo University, 2100, Kujirai,Kawagoe, Saitama, 3508585, Japan
  • Bio-Nano Electronics Research Center, Toyo University, 2100, Kujirai,Kawagoe, Saitama, 3508585, Japan
  • Bio-Nano Electronics Research Center, Toyo University, 2100, Kujirai,Kawagoe, Saitama, 3508585, Japan
  • Bio-Nano Electronics Research Center, Toyo University, 2100, Kujirai,Kawagoe, Saitama, 3508585, Japan
  • Bio-Nano Electronics Research Center, Toyo University, 2100, Kujirai,Kawagoe, Saitama, 3508585, Japan
author
  • Bio-Nano Electronics Research Center, Toyo University, 2100, Kujirai,Kawagoe, Saitama, 3508585, Japan
  • Bio-Nano Electronics Research Center, Toyo University, 2100, Kujirai,Kawagoe, Saitama, 3508585, Japan

References

  • Raveendran, P., Fu, J., Wallen, S.L., 2006. A simple and“green” method for the synthesis of Au, Ag, and Au–Ag alloynanoparticles. Green Chemistry 8, 34-38.
  • Alivisatos, P., 1996. Semiconductor Clusters, Nanocrystals,and Quantum Dots. Science 271, 933-937.
  • Coe, S., Woo, W.K., Bawendi, M., Bulovi, V., 2002.Electroluminescence from single monolayers of nanocrystalsin molecular organic devices. Nature 420, 800-803.
  • Ozin, G.A., 1992, Nanochemistry – Synthesis in DiminishingDimensions Advanced Materials 4, 612-649.
  • Bar, H., Bhui, D.K., Sahoo, G.P., Sarkar, P., De, S.P., Misra,A., 2009. Green synthesis of silver nanoparticles using latex ofJatropha curcas. Colloids and Surfaces A: Physicochemicaland Engineering Aspects 339, 134-139.
  • Bar, H., Bhui, D.K., Sahoo, G.P., Sarkar, P., Pyne, S., Misra,A., 2009, Green synthesis of silver nanoparticles usingseed extract of Jatropha curcas. Colloids and Surfaces A:Physicochemical and Engineering Aspects 348, 212-216.
  • Das, S.K., Dickinson, C., Lafir, F., Brougham, D.F., Marsili,E., 2012. Synthesis, characterization and catalytic activityof gold nanoparticles biosynthesized with Rhizopus oryzaeprotein extract. Green Chemistry 14, 1322-1334.[Crossref][WoS]
  • Guo, R., Song, Y., Wang, G., Murray, R.W., 2005. DoesCore Size Matter in the Kinetics of Ligand Exchanges ofMonolayer-Protected Au Clusters? Journal of AmericanChemical Society 127, 2752–2757.
  • Jang, H., Kim, Y.K., Ryoo, S.R., Kim, M.H., Min, D.H.,2010. Facile synthesis of robust and biocompatible goldnanoparticles. Chemical Communication 46, 583-585.
  • Frens, G., 1973. Controlled Nucleation for the Regulation ofthe Particle Size in Monodisperse Gold Suspensions. NaturePhysical Science 241, 20-22
  • Boro, R.C., Kaushal, J., Nangia, Y., Wangoo, N.,Bhasin, A., Suri, C.R., 2011. Gold nanoparticles catalyzedchemiluminescence immunoassay for detection of herbicide2,4-dichlorophenoxyacetic acid. Analyst, 2011,136, 2125-2130[WoS]
  • Guo, Y., Wang, Z., Shao, H., Jiang, X., 2012. Stablefluorescent gold nanoparticles for detection of Cu2+ withgood sensitivity and selectivity. Analyst 137, 301-304.[WoS]
  • Chauhan, A., Zubair, S., Tufail, S., Sherwani, A., Sajid,M., Raman, S.C., Azam, A., Owais, M., 2011. Fungusmediatedbiological synthesis of gold nanoparticles:potential in detection of liver cancer. International Journal ofNanomedicine 6, 2305–2319.[WoS]
  • Sharma, N.C., Sahi, S.V., Nath, S., Parsons, J.G., Gardea-Torresdey, J.L., Pal, T., 2007. Synthesis of plant-mediatedgold nanoparticles and catalytic role of biomatrix-embeddednanomaterials. Environmental Science and Technology 41,5137–5142.
  • Caia, F., Lia, J., Suna, J., Jia, Y., 2011. Biosynthesis ofgold nanoparticles by biosorption using Magnetospirillumgryphiswaldense MSR-1. Chemical Engineering Journal 175,70–75.[WoS]
  • Nadagouda, M.N., Varma, R.S., 2006. Green and controlledsynthesis of gold and platinum nanomaterials using vitaminB2: density-assisted self-assembly of nanospheres, wiresand rods. Green Chemistry 8, 516-518.
  • Shankar, S.S., Ahmad, A., Pasricha, R., Sastry, M., 2003.Bioreduction of chloroaurate ions by geranium leaves andits endophytic fungus yields gold nanoparticles of differentshapes. Journal of Materials Chemistry 13, 1822-1826.
  • Huang, X., Wu, H., Liao, X., Shi, B., 2010. One-step,size-controlled synthesis of gold nanoparticles at roomtemperature using plant tannin. Green Chemistry 12,395-399.[WoS][Crossref]
  • Beattie, I.R., Haverkamp, R.G., 2011. Silver and goldnanoparticles in plants: sites for the reduction to metal.Metallomics 3, 628-632.[PubMed][WoS][Crossref]
  • Iravani, S., 2011. Green synthesis of metal nanoparticlesusing plants. Green Chemistry 13, 2638-2650.[WoS][Crossref]
  • Quaresma, P., Soares, L., Contar, L., Miranda, A., Osório,I., Carvalho, P.A., Franco, R., Pereira, E., 2009. Greenphotocatalytic synthesis of stable Au and Ag nanoparticles.Green Chemistry 11, 1889-1893.
  • King, A.J., He, W., Cuevas, J.A., Freudenberger, M.,Ramiaramanana, D., Graham, I.A., 2009. Potential ofJatropha curcas as a source of renewable oil and animalfeed. Journal of Experimental Botany 60, 2897-2905.[WoS]
  • Berchmans, A.J., Hirata, S., 2008. Biodiesel production fromcrude Jatropha curcas L. seed oil with a high content of freefatty acids. Bioresource Technology 99, 1716–1721.
  • Jingura, R.M., Musademba, D., Matengaifa, R., 2010. Anevaluation of utility of Jatropha curcas L. as a source ofmultiple energy carriers. International Journal of Engineering,Science and Technology 2, 115-122.
  • Martin, J.K., Joachim, M., 2009. Energy from seed shells ofJatropha curcas. Landtechnik 64, 391-393.
  • Manurung, R., Wever, D.A.Z., Wildschut, J., Venderbosch,R.H., Hidayat, H., van Dam, J.E.G., Leijenhorst, E.J.,Broekhuis, A.A., Heeres, H.J., 2009. Valorisation of Jatrophacurcas L. plant parts: Nut shell conversion to fast pyrolysis oil.Food and Bioproducts Processing 87, 187-196.[WoS]
  • Singh, R.N., Vyas, D.K., Srivastava, N.S.L., Narra, M., 2008.SPERI experience on holistic approach to utilize all partsof Jatropha curcas fruit for energy. Renewable Energy 33,1868-1873.[WoS]
  • Abou-Arab, A.A., Abu-Salem, F.M., 2010. Nutritional qualityof Jatropha curcas seeds and effect of some physical andchemical treatments on their anti-nutritional factors. AfricanJournal of Food Science 4, 93-103.
  • Makkar, H.P.S., Martinez-Herrera, J., Becker, K., 2008.Variations in Seed Number per Fruit, Seed PhysicalParameters and Contents of Oil, Protein and Phorbol Ester inToxic and Non-Toxic Genotypes of Jatropha curcas. Journalof Plant Sciences 3, 260-265.
  • Kumar, V., Makkar, H.P.S., Becker, K., Dietary inclusion ofdetoxified Jatropha curcas kernel meal: effects on growthperformance and metabolic efficiency in common carpCyprinus carpio. Fish Physiology and Biochemistry. DOI10.1007/s10695-010-9394-7.[Crossref][WoS]
  • Kumar, V., Makkara, H.P.S, Amselgruberb, W., Beckera, K.,2010. Physiological, haematological and histopathologicalresponses in common carp (Cyprinus carpio L.) fingerlingsfed with differently detoxified Jatropha curcas kernel meal.Food and Chemical Toxicology 48, 2063–2072.[WoS]
  • Link, S., El-Sayed, M.A., 2000. Shape and size dependenceof radiative, non-radiative and photothermal propertiesof gold nanocrystals. International Reviews in PhysicalChemistry 19, 409-453.
  • Fiehn, O., Kopka, J., Trethewey, R.N., Willmitzer, L.,2000. Identification of uncommon plant metabolitesbased on calculation of elemental compositions using gaschromatography and quadrupole mass spectrometry.Analytical Chemistry 72, 3573–3580.
  • Lin, A., Son, D.H., Ahn, H., Song, G.H., Han, W.T., 2007.Visible to infrared photoluminescence from gold nanoparticlesembedded in germano-silicate glass fiber. Optics Express15, 6374-6379.[WoS][PubMed][Crossref]
  • Das, S.K., Das, A.R., Guha, A.K., 2010. Microbial Synthesisof Multishaped Gold Nanostructures. Small 6, 1012-1021.[WoS]
  • Xie, J., Lee. J.Y., Daniel I.C., Wang, Ting, Y.P., 2007.Identification of Active Biomolecules in the High-YieldSynthesis of Single-Crystalline Gold Nanoplates in AlgalSolutions. Small 3, 672-682.[WoS]
  • Stevenson, H.J.R., Bolduan, O.E.A., 1952. InfraredSpectrophotometry as a Means for Identification of Bacteria.Science 1, 111-113.
  • Bain, C.D., Evall, J., Whitesides, G.M., 1989. Formation ofmonolayers by the coadsorption of thiols on gold: variation inthe head group, tail group, and solvent. Journal of AmericanChemical Society 111, 7155–7164.
  • Love, J.C., Estroff, L.A., Kriebel, J.K., Nuzzo, R.G.,Whitesides, G.M., 2005. Self-Assembled Monolayers ofThiolates on Metals as a Form of Nanotechnology. ChemicalReviews 105, 1103–1170.
  • Hayat, M., 1989. Colloidal Gold – Principles, Methods andApplications. Volume 1 Academic Press, San Diego.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_nanome-2012-0002
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.