Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2014 | 1 | 1 |

Article title

Nanofabrication techniques of highly organized
monolayers sandwiched between two electrodes
for molecular electronics


Title variants

Languages of publication



It is expected that molecular electronics, i.e.,
the use of molecules as critical functional elements in
electronic devices, will lead in the near future to an
industrial exploitable novel technology, which will open
new routes to high value-added electronic products.
However, despite the enormous advances in this field
several scientific and technological challenges should
be surmounted before molecular electronics can be
implemented in the market. Among these challenges are
the fabrication of reliable, robust and uniform contacts
between molecules and electrodes, the deposition of
the second (top) contact electrode, and development of
assembly strategies for precise placement of molecular
materials within device structures. This review covers
advances in nanofabrication techniques used for the
assembly of monomolecular films onto conducting or
semiconducting substrates as well as recent methods
developed for the deposition of the top contact electrode
highlighting the advantages and limitations of the several
approaches used in the literature. This contribution also
aims to define areas of outstanding challenges in the
nanofabrication of monomolecular layers sandwiched
between two electrodes and opportunities for future
research and applications.








Physical description


11 - 8 - 2014
15 - 12 - 2014
27 - 10 - 2014


  • Departamento de Química Física, Facultad de
    Ciencias Universidad de Zaragoza, Zaragoza, 50009, Spain
  • Instituto de Nanociencia de Aragón (INA) Campus Rio Ebro
    Edificio i+d Universidad de Zaragoza, Zaragoza, 50018, Spain
  • Laboratorio de Microscopias Avanzadas
    (LMA) Campus Rio Ebro Edificio i+d Universidad de Zaragoza,
    Zaragoza, 50018, Spain
  • Universidad Industrial de Santander, Escuela
    de Ingeniería Química, Carrera 27 calle 9 ciudad universitaria,
    Bucaramanga, Colombia
  • Departamento de Química Física, Facultad de
    Ciencias Universidad de Zaragoza, Zaragoza, 50009, Spain
  • Laboratorio de Microscopias Avanzadas
    (LMA) Campus Rio Ebro Edificio i+d Universidad de Zaragoza,
    Zaragoza, 50018, Spain
  • Instituto de Ciencia de Materiales de Aragón
    (ICMA) Universidad de Zaragoza-CSIC, Zaragoza, 50009, Spain


  • ---
  • [1] Editorial, Does molecular electronics compute?, Nat. Nanotechnol., 2013, 8, 377-377.
  • [2] Editorial, Visions for a molecular future, Nat. Nanotechnol., 2013, 8, 385-389.
  • [3] Fatemi V., Kamenetska M., Neaton J.B., Venkataraman L., Environmental Control of Single-Molecule Junction Transport, Nano Lett., 2011, 11, 1988-1992.[Crossref]
  • [4] Ferreira Q., Braganca A.M., Alcácer L., Morgado J., Conductance of well-defined porphyrin self-sssembled molecular wires up to 14 nm in length, J. Phys. Chem. C., 2014, 118, 7229-7234.
  • [5] McCreery R.L., Bergren A.J., Progress with molecular electronic junctions: meeting experimental challenges in design and fabrication, Adv. Mater., 2009, 21, 4303-4322.[Crossref]
  • [6] Tao N.J., Electron transport in molecular junctions, Nat. Nanotechnol., 2006, 1, 173-181.[Crossref]
  • [7] Weibel N., Grunder S., Mayor M., Functional molecules in electronic circuits, Org. Biomol. Chem., 2007, 5, 2343-2353.
  • [8] Grozema F.C., Siebbeles D.A., Electronics and molecular wires. Charge and exciton transport through molecular wires, Siebbeles L.D.A., Grozema F.C. (Eds.). Wiley-VDH Verlag GmbH & Co. KGaA, W. 2011.
  • [9] Aviram A., Ratner M., Molecular rectifiers, Chem. Phys. Lett., 1974, 29, 277-283.[Crossref]
  • [10] Reed M.A., Zhou C., Muller C.J., Burgin T.P., Tour J.M., Conductance of a molecular junction, Science, 1997, 278, 252-254.[Crossref]
  • [11] Cui X., Primak A., Zarate X., Tomfohr J., Sankey O.F., Moore A.L., et al., Reproducible measurement of single-molecule conductivity, Science, 2001, 294, 571-574.
  • [12] Smith R.H.M., Noat Y., Untiedt C., Lang N.D., van Hemert M.C., van Ruitenbeek J.M., Measurement of the conductance of a hydrogen molecule, Nature, 2002, 419, 906-909.
  • [13] Xu B.Q., Tao N.J., Measurement of single-molecule resistance by repeated formation of molecular junctions, Science, 2003, 301, 1221-1223.
  • [14] Reichert J., Ochs R., Beckmann D., Weber H.B., Mayor M., von Löhneysen H., Driving current through single organic molecules, Phys. Rev. Lett., 2002, 88, 176804.[Crossref]
  • [15] Haiss W., Wang C., Grace I., Batsanov A.S., Schiffrin D.J., Higgins S.J., et al., Precision control of single-molecule electrical junctions, Nat. Mater., 2006, 5, 995-1002.[Crossref]
  • [16] Kiguchi M., Tal O., Wohlthat S., Pauly F., Krieger M., Djukic D., et al., Highly conductive molecular junctions based on direct binding of benzene to platinum electrodes, Phys. Rev. Lett., 2008, 101, 046801.[Crossref]
  • [17] Lafferentz L., Ample F., Yu H., Hecht S., Joachim C., Grill L., Conductance of a single conjugated polymer as a continuous function of its length, Science, 2009, 323, 1193-1197.
  • [18] Sedghi G., Garcia-Suarez V., Esdaile L., Anderson H., Lambert C., Martin S., et al., Long-range electron tunnelling in oligo-porphyrin molecular wires, Nat. Nanotechnol., 2011, 6, 517-523.[Crossref]
  • [19] Perrin M.L., Verzijl C.J.O., Martin C.A., Shaikh A.J., Eelkema R., van Esch J.H., et al., Large tunable image-charge effects in single-molecule junctions, Nat. Nanotechnol., 2013, 8, 282-287.[Crossref]
  • [20] Aradhya S.V., Venkataraman L., Single-molecule junctions beyond electronic transport, Nat. Nanotechnol., 2013, 8, 399-410.[Crossref]
  • [21] Karthäuser S., Control of molecule-based transport for future molecular devices, J. Phys. Cond. Matter., 2011, 23, 013001.[Crossref]
  • [22] Pera G., Martín S., Ballesteros L.M., Hope A.J., Low P.J., Nichols R.J., Cea P., Metal-molecule-metal junctions in Langmuir-Blodgett films using a new linker: Trimethylsilane, Chem. Eur. J., 2010, 16, 13398-13405.[Crossref]
  • [23] Ballesteros L.M., Martín S., Cortés J., Marqués-González S., Higgins S.J., Nichols R.J., et al., Controlling the structural and electrical properties of diacid oligo(phenylene ethynylene) Langmuir-Blodgett films, Chem. Eur. J., 2013, 19, 5352-5363.[Crossref]
  • [24] Balzani V., Nanoscience and nanotechnology: The bottom-up construction of molecular devices and machines, Pure Appl. Chem., 2008, 80, 1631-1650.
  • [25] Nuzzo R.G., Allara D.L., Adsorption of bifunctional organic disulfides on gold surfaces J. Am. Chem. Soc., 1983, 105, 4481-4483.[Crossref]
  • [26] Ulman A., An Introduction to ultrathin organic films: from Langmuir-Blodgett to self-assembly, 1991, San Diego: Academic Press, Inc.
  • [27] Dubois L.H., Nuzzo R.G., Synthesis, structure, and properties of model organic-surfaces, Annu. Rev. Phys. Chem., 1992, 43, 437-463.[Crossref]
  • [28] Bain C.D., Whitesides G.M., Attenuation lengths of photoelectrons in hydrocarbon films, J. Phys. Chem., 1989, 93, 1670-1673.[Crossref]
  • [29] Fendler J.H., Chemical self-assembly for electronic applications, Chem. Mater., 2001, 13, 3196-3210.[Crossref]
  • [30] Kühnle A., Self-assembly of organic molecules at metal surfaces, Curr. Opin. Colloid Interface Sci., 2009, 14, 157-168.[Crossref]
  • [31] Vericat C., Vela M.E., Benitez G., Carro P., and Salvarezza R.C., Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system, Chem. Soc. Rev., 2010, 39, 1805-1834.[Crossref]
  • [32] Vericat C., Vela M.E., Corthey G., Pensa E., Cortés E., Fonticelli M.H., et al., Self-assembled monolayers of thiolates on metals: a review article on sulfur-metal chemistry and surface structures, RSC Adv., 2014, 4, 27730-27754.
  • [33] Halik M., Hirsch A., The potential of molecular self-assembled monolayers in organic electronic devices, Adv. Mater., 2011, 23, 2689-2695.[Crossref]
  • [34] Dhirani A., Zehner R.W., Hsung R.P., Guyot-Sionnest P., Sita L.R., Self-assembly of conjugated molecular rods: A high-resolution STM study, J. Am. Chem. Soc., 1996, 118, 3319-3320.[Crossref]
  • [35] Ciszek J.W., Stewart M.P., Tour J.M., Spontaneous assembly of organic thiocyanates on gold sufaces. Alternative precursors for gold thiolate assemblies, J. Am. Chem. Soc., 2004, 126, 13172-13173.[Crossref]
  • [36] Ulman A., Formation and structure of self-assembled monolayers, Chem. Rev., 1996, 96, 1533-1554.[Crossref]
  • [37] James D.K., Tour J.M., Electrical measurements in molecular electronics, Chem. Mater., 2004, 16, 4423-4435.[Crossref]
  • [38] Lewis P.A., Inman C.E., Maya F., Tour J.M., Hutchison J.E., Weiss P.S., Molecular engineering of the polarity and interactions of molecular electronic switches, J. Am. Chem. Soc., 2005, 127, 17421-17426.[Crossref]
  • [39] Ditzler L.R., Karunatilaka C., Donuru V.R., Liu H.Y., Tivanski A.V., Electromechanical Properties of self-assembled monolayers of tetrathiafulvalene derivatives studied by conducting probe atomic force microscopy, J. Phys. Chem. C., 2010, 114, 4429-4435.
  • [40] Liu K., Li G., Wang X., Wang F., Length dependence of electron conduction for oligo(1,4-phenylene ethynylene)s: a conductive probe-atomic force microscopy investigation, J. Phys. Chem. C, 2008, 112, 4342-4349.
  • [41] Qi Y., Ratera I., Prk J.Y., Ashby P.D., Quek S.Y., Neaton J.B., Salmeron M., Mechanical and charge transport properties of alkanethiol self-assembled monolayers on a Au(111) surface: The role of molecular tilt, Langmuir, 2008, 24, 2219-2223.[Crossref]
  • [42] Choi S.H., Kim B., Frisbie C.D., Electrical resistance of long conjugated molecular wires, Science, 2008, 320, 1482-1486.[Crossref]
  • [43] Techane S.D., Gamble L.J., Castner D.G., Multitechnique Characterization of self-assembled carboxylic acid-terminated alkanethiol monolayers on nanoparticle and flat gold surfaces, J. Phys. Chem. C., 2011, 115, 9432-9441.
  • [44] Pookpanratana S., Robertson J.W.F., Jaye C., Fischer D.A., Richter C.A., Hacker C.A., Electrical and physical characterization of bilayer carboxylic acid-functionalized molecular layers, Langmuir, 2013, 29, 2083-2091.[Crossref]
  • [45] Querebillo C.J., Terfort A., Allara D.L., Zharnikov M., Static conductance of nitrile-substituted oligophenylene and oligo(phenylene ethynylene) self-assembled mono layers studied by the mercury-drop method, J. Phys. Chem. C., 2013, 117, 25556-25561.
  • [46] Häkkinen H., The gold-sulfur interface at the nanoscale, Nat. Chem., 2012, 4, 443-455.[Crossref]
  • [47] Henkelman G., Arnaldsson A., Jónsson H., A fast and robust algorithm for Bader decomposition of charge density, Comp. Mater. Sci., 2006, 36, 354-360.[Crossref]
  • [48] Grönbeck H., Walter M., Häkkinen H., Theoretical characterization of cyclic thiolated gold clusters, J. Am. Chem. Soc., 2006, 128, 10268-10275.[Crossref]
  • [49] Howell J.A.S., Structure and bonding in cyclic thiolate complexes of copper, silver and gold, Polyhedron, 2006, 25, 2993-3005.[Crossref]
  • [50] Kacprzak K.A., López-Acevedo O., Häkkinen H., Grönbeck H., Theoretical characterization of cyclic thiolated copper, silver, and gold clusters, J. Phys. Chem. C., 2010, 114, 13571-13576.
  • [51] Barngrover B.M., Aikens C.M., Incremental binding energies of gold(I) and silver(I) thiolate clusters, J. Phys. Chem. A., 2011, 115, 11818-11823.[Crossref]
  • [52] Ning C.-G., Xiong X.-G., Wang Y.-L., Li J., Wang L.-S., Probing the electronic structure and chemical bonding of the “staple” motifs of thiolate gold nanoparticles: Au(SCH3)(2)(-) and Au-2(SCH3)(3)(-), Phys. Chem. Chem. Phys., 2012, 14, 9323-9329.[Crossref]
  • [53] Tour J.M., Jones II L., Pearson D.L., Lamba J.J.S., Burgin T.P., Whitesides G.M., et al., Self-Assembled monolayers and multilayers of conjugated thiols, alpha, omega-dithiols, omega-dithiols, and thioacetyl-containing adsorbaes - understanding attachments between potential molecular wires and gold surfaces, J. Am. Chem. Soc., 1995, 117, 9529-9534.[Crossref]
  • [54] Stapleton J.J., Harder P., Daniel T.A., Reinard M.D., Yao Y., Price D.W., et al., Self-assembled oligo(phenylene-ethynylene) molecular electronic switch monolayers on gold: Structures and chemical stability, Langmuir, 2003, 19, 8245-8255.[Crossref]
  • [55] Ishida T., Hara M., Kojima I., Tsuneda S., Nishida N., Sasabe H., Knowll W., High resolution X-ray photoelectron spectroscopy measurements of octadecanethiol self-assembled monolayers on Au(111), Langmuir, 1998, 14, 2092-2096.[Crossref]
  • [56] Sellers H., Ulman A., Shnidman Y., Eilers J.E., Structure and binding of alkanethiolates on gold and silver surfaces - implications for self-assembled monolayers, J. Am. Chem. Soc., 1993, 115, 9389-9401.[Crossref]
  • [57] Müller K.H., Effect of the atomic configuration of gold electrodes on the electrical conduction of alkanedithiol molecules, Phys. Rev. B., 2006, 73, 045403.[Crossref]
  • [58] Ramachandran G.K., Hopson T.J., Rawlett A.M., Nagahara L.A., Primak A., Lindsay S.M., A bond-fluctuation mechanism for stochastic switching in wired molecules, Science, 2003, 300, 1413-1416.
  • [59] Keane Z.K., Ciszek J.W., Tour J.M., Natelson D., Three-terminal devices to examine single-molecule conductance switching, Nano Lett., 2006, 6, 1518-1521.[Crossref]
  • [60] Yasuda S., Yoshida S., Sasaki J., Okutsu Y., Nakamura T., Taninaka A., et al., Bond fluctuation of S/Se anchoring observed in single-molecule conductance measurements using the point contact method with scanning tunneling microscopy, J. Am. Chem. Soc., 2006, 128, 7746-7747.[Crossref]
  • [61] Schreiber F., Eberhardt A., Leung T.Y.B., Schwartz P., Wetterer S.M., Lavrich, et al., Adsorption mechanisms, structures, and growth regimes of an archetypal self-assembling system: Decanethiol on Au(111), Phys. Rev. B, 1998, 57, 12476-12481.[Crossref]
  • [62] Nitzan A., Ratner M.A., Electron transport in molecular wire junctions, Science, 2003, 300, 1384-1389.
  • [63] Xue Y.Q., Datta S., Ratner M.A., Charge transfer and “band lineup” in molecular electronic devices: a chemical and numerical interpretation, J. Chem. Phys., 2001, 115, 4292-4299.
  • [64] von Wrochem F., Gao D., Scholz F., Nothofer H.-G., Nelles G., Wessels J.M., Efficient electronic coupling and improved stability with dithiocarbamate-based molecular junctions, Nat. Nanotechnol., 2010, 5, 618-624.[Crossref]
  • [65] Gao D., Scholz F., Nothofer H.-G., Ford W.E., Scherf U., Wessels J.M., et al., Fabrication of asymmetric molecular junctions by the oriented assembly of dithiocarbamate rectifiers, J. Am. Chem. Soc., 2011, 133, 5921-5930.[Crossref]
  • [66] Li Z., Kosov D.S., Dithiocarbamate anchoring in molecular wire junctions: a first principles study, J. Phys. Chem. B., 2006, 110, 9893-9898.[Crossref]
  • [67] Schulz P., Schäfer T., Zangmeister C.D., Effertz C., Meyer D., Mokros D., et al., A new route to low resistance contacts for performance-enhanced organic electronic devices, Adv. Mater. Interfaces, 2014, In Press. DOI: 10.1002/admi.201300130.[Crossref]
  • [68] Adaligil E., Shon Y.-S., Slowinski K., Effect of headgroup on electrical conductivity of self-assembled monolayers on mercury: n-alkanethiols versus n-alkaneselenols, Langmuir, 2010, 26, 1570-1573.[Crossref]
  • [69] Monnell J.D., Stapleton J.J., Dirk S.M., Reinerth A., Tour J.M., Allara D.L., Weiss, P.S., Relative conductances of alkaneselenolate and alkanethiolate monolayers on Au{111}, J. Phys. Chem. B., 2005, 109, 20343-20349.[Crossref]
  • [70] Lu Q., Yao C., Wang X., Wang F., Enhancing molecular conductance of oligo(p-phenylene ethynylene)s by incorporating ferrocene into their backbones, J. Phys. Chem. B., 2012, 116, 17853-17861.
  • [71] Ashwell G.J., Williams A., Barnes S.A., Chappell S.L., Phillips L.J., Robinson B.J., et al., Self-Assembly of amino-thiols via gold-nitrogen links and consequence for in situ elongation of molecular wires on surface-modified electrodes, J. Phys. Chem. C., 2011, 115, 4200-4208.
  • [72] Kim B., Beebe J.M., Jun Y., Zhu X.Y., Frisbie C.D., Correlation between HOMO alignment and contact resistance in molecular junctions: aromatic thiols versus aromatic isocyanides, J. Am. Chem. Soc., 2006, 128, 4970-4971.[Crossref]
  • [73] Beebe J.M., Engeelkes V.B., Miller L.L., Frisbie C.D., Contact resistance in metal-molecule-metal junctions based on aliphatic SAMs: effects of surface linker and metal work function, J. Am. Chem. Soc., 2002, 124, 11268-11269.[Crossref]
  • [74] Beebe J.M., Kim B., Frisbie C.D., Kushmerick J.G., Measuring relative barrier heights in molecular electronic junctions with transition voltage spectroscopy, ACS Nano, 2008, 2, 827-832.[Crossref]
  • [75] Zangmeister C.D., Robey S.W., van Zee R.D., Kushmerik J.G., Naciri J., Yao Y., et al., Fermi level alignment in self-assembled molecular layers: the effect of coupling chemistry, J. Phys. Chem. B., 2006, 110, 17138-17144.[Crossref]
  • [76] Tan A., Balachandran J., Sadat S., Gavini V., Dunietz B.D., Jang S.-Y., Reddy P., Effect of length and contact chemistry on the electronic structure and thermoelectric properties of molecular junctions, J. Am. Chem. Soc., 2011, 133, 8838-8841.[Crossref]
  • [77] Tan A., Balachandran J., Dunietz B.D., Jang S.-Y., Gavini V., Reddy P., Length dependence of frontier orbital alignment in aromatic molecular junctions, Appl. Phys. Lett., 2012, 101, 243107.[Crossref]
  • [78] Yochelis S., Ktzir E., Kalcheim Y., Gutkin V., Millo O., Paltiel Y., Formation of Au-Silane bonds, Journal of Nanotechnology, 2012, ID 903761, 8 pages.
  • [79] Katsonis N., Marchenko A., Taillemite S., Fichou D., Chouraqui G., Aubert C., Malacria M., A molecular approach to self-assembly of trimethylsilylacetylene derivatives on gold, Chem. Eur. J., 2003, 9, 2574-2581.[Crossref]
  • [80] Katsonis N., Marchenko A., Fichou D., Barret N., Investigation on the nature of the chemical link between acetylenic organosilane self-assembled monolayers and Au(111) by means of synchrotron radiation photoelectron spectroscopy and scanning tunneling microscopy, Surf. Sci., 2008, 602, 9-16.
  • [81] Watcharinyanon S., Nilsson D., Moons E., Shaporenko A., Zharnikov M., Albinsson B., et al., A spectroscopic study of self-assembled monolayer of porphyrin-functionalized oligo(phenyleneethynylene)s on gold: the influence of the anchor moiety, Phys. Chem. Chem. Phys., 2008, 10, 5264-5275.[Crossref]
  • [82] Marques-Gonzalez S., Yufit D.S., Howard J.A.K., Martin S., Osorio H.M., Garcia-Suarez V.M., et al., Simplifying the conductance profiles of molecular junctions: the use of the trimethylsilylethynyl moiety as a molecule-gold contact, Dalton Trans., 2013, 42, 338-341.[Crossref]
  • [83] James D.K., Tour J.M., Molecular wires, Top. Curr. Chem., 2005, 257, 33-62.
  • [84] Terada K.-I., Nakamura H., Kanaizuka K., Haga M.A., Asai Y., Ishida T., Long-range electron transport of ruthenium-centered multilayer films via a stepping-stone mechanism, ACS Nano, 2012, 6, 1988-1999.[Crossref]
  • [85] Villares A., Lydon D.P., Low P.J., Robinson B.J., Ashwell G.J., Royo F.M., Cea P., Characterization and conductivity of Langmuir-Blodgett films prepared from an amine-substituted oligo(phenylene ethynylene), Chem. Mater., 2008, 20, 258-264.[Crossref]
  • [86] Martin S., Haiss W., Higgins S., Cea P., Lopez M.C., Nichols R.J., A comprehensive study of the single molecule conductance of alpha,omega-dicarboxylic acid-terminated Alkanes, J. Phys. Chem. C, 2008, 112, 3941-3948.[Crossref]
  • [87] Xing Y., Park T.H., Venkatramani R., Keinan S., Beratan D.N., Therien M.J., Borguet E., Optimizing single-molecule conductivity of conjugated organic oligomers with carbodithioate linkers, J. Am. Chem. Soc. , 2010, 132, 7946-7956.[Crossref]
  • [88] Quek S.Y., Kamenetska M., Stigerwald M.L., Choi H.J., Louie S.G., Hybertsen M.S., et al., Mechanically controlled binary conductance switching of a single-molecule junction, Nature Nanotechnol., 2009, 4, 230-234.[Crossref]
  • [89] Hong W., Li H., Liu S.-X., Fu Y., Li J., Kaliginedi V., et al., Trimethylsilyl-terminated oligo(phenylene ethynylene)s: an approach to single-molecule junctions with covalent Au–C σ-bonds, J. Am. Chem. Soc., 2012, 134, 19425-19431.[Crossref]
  • [90] Ko C., Huang M., Fu M., Chen C., Superior contact for single-molecule conductance: electronic coupling of thiolate and isothiocyanate on Pt, Pd, and Au, J. Am. Chem. Soc., 2010, 132, 756-764.[Crossref]
  • [91] Park Y.S., Whalley A.C., Kamenetska M., Steigerwald M.L., Hybertsen M.S., Nuckolls C., Venkataraman L., Contact chemistry and single-molecule conductance: a comparison of phosphines, methyl sulfides, and amines, J. Am. Chem. Soc. , 2007, 129, 15768-15769.[Crossref]
  • [92] Klausen R.S., Widawsky J.R., Steigerwald M.L., Venkataraman L., Nuckolls C., Conductive molecular silicon, J. Am. Chem. Soc., 2012, 134, 4541-4544.[Crossref]
  • [93] Moreno-Garcia P., Gulcur M., Manrique D.Z., Pope T., Hong W., Kaliginedi V., et al., Single-molecule conductance of functionalized oligoynes: length dependence and junction evolution, J. Am. Chem. Soc., 2013, 135, 12228-12240.[Crossref]
  • [94] Arroyo C.R., Tarkuc S., Frisenda R., Seldenthuis J.S., Woerde C.H.M., Eelkema R., et al., Signatures of quantum interference effects on charge transport through a single benzene ring, Ang. Chem. Int. Ed., 2013, 52, 3152-3155.[Crossref]
  • [95] Parameswaran R., Widawsky J.R., Vázquez H., Park Y.S., Boardman B.M., Nuckolls C., et al., Reliable formation of single molecule junctions with air-stable diphenylphosphine linkers, J. Phys. Chem. Lett. , 2010, 1, 2114-2119.[Crossref]
  • [96] Engelkes V.B., Beebe J.M., Frisbie C.D., Length-dependent transport in molecular junctions based on SAMs of alkanethiols and alkanedithiols: effect of metal work function and applied bias on tunneling efficiency and contact resistance, J. Am. Chem. Soc., 2004, 126, 14287-14296.[Crossref]
  • [97] Nijhuis C.A., Reus W.F., Whitesides G.M., Molecular rectification in metal-SAM-metal oxide-metal junctions, J. Am. Chem. Soc., 2009, 131, 17814-17827.[Crossref]
  • [98] Song F., Wells J.W., Handrup K., Li Z.S., Bao S.N., Schulte K., et al., Direct measurement of electrical conductance through a self-assembled molecular layer, Nat. Nanotechnol., 2009, 4, 373-376.[Crossref]
  • [99] Sergani S., Furmansky Y., Visoly-Fisher I., Metal-free molecular junctions on ITO via amino-silane binding-towards optoelectronic molecular junctions, Nanotechnology, 2013, 24, 455204 (8pp).[Crossref]
  • [100] Wu J., Agrawal M., Becerril H.A., Bao Z., Liu Z., Chen Y., Peumans P., Organic light-emitting diodes on solution-processed graphene transparent electrodes, ACS Nano, 2010, 4, 43-48.[Crossref]
  • [101] Díez-Pérez I., Hihath J., Lee Y., Yu L., Adamska L., Kozhushner M.A., et al., Rectification and stability of a single molecular diode with controlled orientation, Nat. Chem., 2009, 1, 635-641.[Crossref]
  • [102] Meyer M.A., Herrmann M., Langer E., Zschech E., In situ SEM observation of electromigration phenomena in fully embedded copper interconnect structures, Microelectron. Eng., 2002, 64, 375-382.[Crossref]
  • [103] Stewart D.R., Ohlberg D.A.A., Beck P.A., Chen Y., Williams R.S., Jeppesen J.O., et al., Molecule-independent electrical switching in Pt/organic monolayer/Ti devices, Nano Lett., 2004, 4, 133-136.[Crossref]
  • [104] Teramae Y., Horiguchi K., Hashimoto S., Tsutsui M., Kurokawa S., Sakai A., High-bias breakdown of Au/1,4-benzenedithiol/Au junctions, Appl. Phys. Lett., 2008, 93, 083121.
  • [105] Strachan D.R., Smith D.E., Johnston D.E., Park T.H., Therien M.J., Bonnell D.A., Johnson A.T., Controlled fabrication of nanogaps in ambient environment for molecular electronics, Appl. Phys. Lett., 2005, 86, 043109.[Crossref]
  • [106] Li C., Bando Y., Golberg D., Current imaging and electromigration-induced splitting of GaN nanowires as revealed by conductive atomic force microscopy, ACS Nano, 2010, 4, 2422-2428.[Crossref]
  • [107] Ward D.R., Scott G.D., Keane Z.K., Halas N.J., Natelson D., Electronic and optical properties of electromigrated molecular junctions, J. Phys: Condens. Matter 2008, 20, 374118.[Crossref]
  • [108] Arielly R., Ofarim A., Noy G., Slelzer Y., Accurate determination of plasmonic fields in molecular junctions by current rectification at optical frequencies, Nano Lett., 2011, 11, 2968-2972.[Crossref]
  • [109] Keller A., Atabek O., Ratner M., Mujica V., Laser-assisted conductance of molecular wires, J. Phys. B At. Mol. Opt. Phys, 2002, 35, 4981-4988.[Crossref]
  • [110] Yan H., Bergren A.J., McCreery R.L., All-carbon molecular tunnel junctions, J. Am. Chem. Soc., 2011, 133, 19168-19177.[Crossref]
  • [111] Seo S., Min M., Lee S.M., Lee H., Photo-switchable molecular monolayer anchored between highly transparent and flexible graphene electrodes, Nat. Commun., 2013, 4, 1920-1927.[Crossref]
  • [112] Yan H., Bergren A.J., McCreery R.L., Della Rocca M.L., Martin P., Lafarge P., Lacroix J.C., Activationless charge transport across 4.5 to 22 nm in molecular electronic junctions, Proc. Natl. Acad. Sci. U.S.A., 2013, 110, 5326-5330.
  • [113] Shibata K., Wada H., Ishikawa K., Takezoe H., Mori T., (Tetrathiafulvalene)(tetracyanoquinodimethane) as a low-contact-resistance electrode for organic transistors, Appl. Phys. Lett., 2007, 90, 193509.[Crossref]
  • [114] Lim J.A., Cho J.H., Park Y.D., Kim D.H., Hwang M., Cho K., Solvent effect of inkjet printed source/drain electrodes on electrical properties of polymer thin-film transistors, Appl. Phys. Lett., 2006, 88, 082102.[Crossref]
  • [115] Koezuka H., Tsumura A., Fuchigami H., Kuramoto K., Polythiophene field-effect transistor with polypyrrole worked as source and drain electrodes, Appl. Phys. Lett., 1993, 62, 1794.[Crossref]
  • [116] Gates B.D., Flexible Electronics, Science, 2009, 323, 1566-1567.
  • [117] Pinzón J.R., Villalta-Cerdas A., Echegoyen L., Fullerenes, carbon nanotubes, and graphene for molecular electronics, Top. Curr. Chem., 2012, 312, 127-174.
  • [118] MacLeod J.M., Rosei F., Molecular self-assembly on graphene, Small, 2014, 10, 1038-1049.[Crossref]
  • [119] Reina A., Jia X., Ho J., Nezich D., Son H., Bulovic V., et al., Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition, Nano Lett., 2009, 9, 30-35.[Crossref]
  • [120] Long B., Manning M., Burke M., Szafranek B.N., Visimberga G., Thompson D., et al., Non-covalent functionalization of graphene using self-assembly of alkane-amines, Adv. Funct. Mater., 2012, 22, 717-725.[Crossref]
  • [121] Du J., Pei S., Ma L., Cheng H.-M., 25th Anniversary Article: Carbon nanotube- and graphene- based transparent conductive films for optoelectronic devices, Adv. Mater., 2014, 26, 1958-1991.[Crossref]
  • [122] Huang X., Zeng Z., Fan Z., Liu J., Zhang H., Graphene-based electrodes, Adv. Mater., 2012, 24, 5979-6004.[Crossref]
  • [123] Kim K.S., Zhao Y., Jang H., Lee S.Y., Kim J.M., Kim K.S., et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature, 2009, 457, 706-710.
  • [124] Jo G., Choe M., Lee S., Park W., Kahng Y.H., Lee T., The application of graphene as electrodes in electrical and optical devices, Nanotechnology, 2012, 23, 112001.[Crossref]
  • [125] Cerofolini C.F., Romano E., Molecular electronics in silico, Appl. Phys. A, 2008, 91, 181-210.[Crossref]
  • [126] Aswal D.K., Koiry S.P., Jousselme B., Gupta S.K., Palacin S., Yakhmi J.V., Hybrid molecule-on-silicon nanoelectronics: Electrochemical processes for grafting and printing of monolayers, Physica E, 2009, 41, 325-344.[Crossref]
  • [127] Heath J.R., Molecular Electronics, Annu. Rev. Mater. Res., 2009, 39, 1-23.[Crossref]
  • [128] Faber E.J., de Smet L.C., Olthuis W., Zuilof H., Sudhölter, E.J., Bergveld P., van der Berg A., Si-C linked organic monolayers on crystalline silicon surfaces as alternative gate insulators, Chem. Phys. Chem., 2005, 6, 2153-2166.
  • [129] Aswal D.K., Lenfant S., Guerin D., Yakhmi J.V., Vuillaume D., Self assembled monolayers on silicon for molecular electronics, Anal. Chim. Acta, 2006, 568, 84-108.
  • [130] Maldonado S., Plass K.E., Knapp D., Lewis N.S., Electrical properties of junctions between Hg and Si(111) surfaces functionalized with short-chain alkyls, J. Phys. Chem. C., 2007, 111, 17690-17699.
  • [131] Green J.E., Wong S.J., Heath J.R., Hall mobility measurements and chemical stability of ultrathin, methylated Si(111)-on-insulator films, J. Phys. Chem. C., 2008, 112, 5185-5189.
  • [132] Nozaki D., Cuniberti G., Silicon-based molecular switch junctions, Nano Res. , 2009, 2, 648-659.[Crossref]
  • [133] Clément N., Guérin D., Pleutin S., Godey S., Vuillaume D., Role of hydration on the electronic transport through molecular junctions on silicon, J. Phys. Chem. C., 2012, 116, 17753-17763.
  • [134] Haj-Yahya A.-E., Yaffe O., Bendikov T., Cohen H., Feldman Y., Vilan A., Cahen D., Substituent variation drives metal/monolayer/semiconductor junctions from strongly rectifying to ohmic behavior, Adv. Mater., 2013, 25, 702-706.[Crossref]
  • [135] Yao J., Zhong L., Natelson D., Tour J.M., Silicon Oxide: A Non-innocent surface for molecular electronics and nanoelectronics dtudies, J. Am. Chem. Soc., 2011, 133, 941-948.[Crossref]
  • [136] Terry J., Linford M.R., Wigren C., Cao R., Pianetta P., Chidsey C.E.D., Determination of the bonding of alkyl monolayers to the Si(111) surface using chemical-shift, scanned-energy photoelectron diffraction, Appl. Phys. Lett., 1997, 71, 1056-1058.[Crossref]
  • [137] Linford M.R., Chidsey C.E.D., Alkyl monolayers covalently bonded to silicon surfaces, J. Am. Chem. Soc., 1993, 115, 12631-12632.[Crossref]
  • [138] Linford M.R., Fenter P., Eisenberger P.M., Chidsey C.E.D., Alkyl monolayers on silicon prepared from 1-alkenes and hydrogen-terminated silicon, J. Am. Chem. Soc., 1995, 117, 3145-3155.
  • [139] Hamers R.J., Hovis J.S., Lee S.W., Liu H.-B., Shan J., Formation of ordered, anisotropic organic monolayers on the Si(001) surface, J. Phys. Chem. B, 1997, 101, 1489-1492.[Crossref]
  • [140] Teplyakov A.V., Kong M.J., Bent S.F., Vibrational spectroscopic studies of Diels-Alder reactions with the Si(100)-2x1 surface as a dienophile, J. Am. Chem. Soc., 1997, 119, 11100-11101.[Crossref]
  • [141] Wolkow R.A., Controlled molecular adsorption on silicon: laying a foundation for molecular devices, Annu. Rev. Phys. Chem., 1999, 50, 413-441.[Crossref]
  • [142] Lavi A., Cohen H., Bendikov T., Vilan A., Cahen D., Si-C-bound alkyl chains on oxide-free Si: towards versatile solution preparation of electronic transport quality monolayers, Phys. Chem. Chem. Phys., 2011, 13, 1293-1296.[Crossref]
  • [143] Bent S.F., Organic functionalization of group IV semiconductor surfaces: principles, examples, applications, and prospects, Surf. Sci., 2002, 500, 879-903.
  • [144] Cleland G., Horrocks B.R., Houlton A., Direct functionalization of silicon via the self-assembly of alcohols, J. Chem. Soc., Faraday Trans., 1995, 91, 4001-4003.
  • [145] Zhu X.-Y., Boiadjiev V., Mulder J.A., Hsung R.P., Major R.C., Molecular assemblies on silicon surfaces via Si-O linkages, Langmuir, 2000, 16, 6766-6772.[Crossref]
  • [146] Roth C.A., Silylation of organic chemicals, Ind. Eng. Chem. Prod. Res. Dev., 1972, 11, 134-139.[Crossref]
  • [147] Ulman A., Self-Assembled monolayers of alkyltrichlorosilanes - building blocks for future organic materials, Adv. Mater., 1990, 2, 573-582.[Crossref]
  • [148] Wasserman S.R., Tao Y.-T., Whitesides G.M., Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on silicon substrates, Langmuir, 1989, 5, 1074-1087.[Crossref]
  • [149] Stewart M.P., Maya F., Kosynkin D.V., Dirk S.M., Stapleton J.J., McGuiness C.L., et al., Direct covalent grafting of conjugated molecules onto Si, GaAs, and Pd surfaces from aryidiazonium salts, J. Am. Chem. Soc., 2004, 126, 370-378.[Crossref]
  • [150] Lee E.J., Bitner T.W., Ha J.S., Shane M.J., Sailor M.J., Light-induced reactions of porous and single-crystal Si surfaces with carboxylic acids, J. Am. Chem. Soc., 1996, 118, 5375-5382.[Crossref]
  • [151] Effenberger F., Gotz G., Bidlingmaier B., Wezstein M., Photoactivated preparation and patterning of self-assembled monolayers with 1-alkenes and aldehydes on silicon hydride surfaces, Ang. Chem. Int. Ed., 1998, 37, 2462-2464.
  • [152] Mischki T.K., Donkers R.L., Eves B.J., Lopinski G.P., Wayner D.D.M., Reaction of alkenes with hydrogen-terminated and photooxidized silicon surfaces. A comparison of thermal and photochemical processes, Langmuir, 2006, 22, 8359-8365.[Crossref]
  • [153] Cicero R.L., Linford M.R., Chidsey C.E.D., Photoreactivity of unsaturated compounds with hydrogen-terminated silicon(111), Langmuir, 2000, 16, 5688-5695.[Crossref]
  • [154] Scheres L., Giesbers M., Zuilhof H., Self-assembly of organic monolayers onto hydrogen-terminated silicon: 1-alkynes are better than 1-alkenes, Langmuir, 2010, 26, 10924-10929.
  • [155] Ishida T., Terada K., Hasegawa K., Kuwahata H., Kusama K., Sato R., et al., Self-assembled monolayer and multilayer formation using redox-active Ru complex with phosphonic acids on silicon oxide surface, Appl. Surf. Sci., 2009, 255, 8824-8830.[Crossref]
  • [156] Thissen P., Peixoto T., Longo R.C., Peng W., Schmidt W.G., Cho K., Chabal Y.J., Activation of surface hydroxyl groups by modification of H-terminated Si(111) surfaces, J. Am. Chem. Soc., 2012, 134, 8869-8874.[Crossref]
  • [157] Bora A., Pathak A., Liao K.-C., Vexler M.I., Kuligk A., Cattani-Scholz A., et al., Organophosphonates as model system for studying electronic transport through monolayers on SiO2/Si surfaces, Appl. Phys. Lett., 2013, 241602.[Crossref]
  • [158] Bansal A., Li X., Lauermann I., Lewis N.S., Alkylation of Si surfaces using a two-step halogenation Grignard route, J. Am. Chem. Soc., 1996, 118, 7225-7226.[Crossref]
  • [159] Song J.H., Sailor M.J., Functionalization of nanocrystalline porous silicon surfaces with aryllithium reagents: formation of silicon-carbon bonds by cleavage of silicon-silicon bonds, J. Am. Chem. Soc., 1998, 120, 2376-2381.[Crossref]
  • [160] Bansal A., Li X., Yi S.I., Weinberg W.H., Lewis N.S., Spectroscopic studies of the modification of crystalline Si(111) surfaces with covalently-attached alkyl chains using a chlorination/alkylation method, J. Phys. Chem. B., 2001, 105, 10266-10277.[Crossref]
  • [161] de Villeneuve C.H., Pinson J., Bernard M.C., Allongue P., Electrochemical formation of close-packed phenyl layers on Si(111), J. Phys. Chem. B, 1997, 101, 2415-2420.[Crossref]
  • [162] Gupta S.K., Koiry S.P., Chauhan A.K., Padma N., Aswal D.K., Yakhmi J.V., Self-assembled and electrochemically deposited mono/multilayers for molecular electronics applications, Appl. Surf. Sci., 2009, 256, 407-413.[Crossref]
  • [163] Bigelow J., The complete works of Benjamin Franklin. G. P. Putnam’s Sons, New York., 1887, p. 253.
  • [164] Pockels A., Surface tension, Nature, 1891, 43, 437-439.
  • [165] Rayleigh L., Phil. Mag., 1899, 48, 321-337.
  • [166] Langmuir I., The constitution and fundamental properties of solids and liquids. II. Liquids, J. Am. Chem. Soc., 1917, 39, 1848-1906.[Crossref]
  • [167] Blodgett K.A., Films built by depositing successive monomolecular layers on a solid surface, J. Am. Chem. Soc., 1935, 57, 1007-1022.[Crossref]
  • [168] Langmuir I., Schaefer V.J., Activities of urease and pepsin monolayers, J. Am. Chem. Soc., 1938, 60, 1351-1360.[Crossref]
  • [169] Kuhn H., Classical aspects of energy transfer in molecular systems, J. Chem. Phys., 1970, 53, 101-108.
  • [170] Gaines G.L., Insoluble monolayers at liquid-gas interface, 1966, New York: Interscience. John Wiley & Sons.
  • [171] Petty M.C., Langmuir-Blodgett films: an introduction, 1996, Cambridge: Cambridge University Press.
  • [172] Gyepi-Garbrah S., Šilerová R., The first direct comparison of self-assembly and Langmuir-Blodgett deposition techniques: two routes to highly organized monolayers, Phys. Chem. Chem. Phys., 2002, 4, 3436-3442.[Crossref]
  • [173] Cea P., Lopez M.C., Martin S., Villares A., Pera G., Giner I., The use of cyclic voltammetry to probe the passivation of electrode surfaces by well-ordered self-assembly and Langmuir-Blodgett films an advanced undergraduate laboratory experiment in surface science and nanomaterials chemistry, J. Chem. Edu., 2009, 86, 723-725.
  • [174] Pera G., Villares A., Lopez M.C., Cea P., Lydon D.P., Low P.J., Preparation and characterization of Langmuir and Langmuir-Blodgett films from a nitrile-terminated tolan, Chem. Mater., 2007, 19, 857-864.[Crossref]
  • [175] Mann B., Kuhn H., Tunneling through fatty acid salt monolayers, J. Appl. Phys., 1971, 42, 4398-4405.[Crossref]
  • [176] Ashwell G.J., Sambles J.R., Martin A.S., Parker W.G., Szablewski M., Rectifying characteristics of MG/(C16H33-Q3CNQ LB film)/PT structures, J. Chem. Soc. Chem. Comm., 1990, 19, 1374-1376.[Crossref]
  • [177] Martin A.S., Sambles J.R., Ashwell G.J., Molecular rectifier, Phys. Rev. Lett., 1993, 70, 218-221.[Crossref]
  • [178] Metzer R.M., Chen B., Höpfner U., Lakshmikantham M.V., Vuillaume D., Kawai T., et al., Unimolecular electrical rectification in hexadecylquinolinium tricyanoquinodimethanide, J. Am. Chem. Soc., 1997, 119, 10455-10466.[Crossref]
  • [179] Xu T., Peterson I.R., Lakshmikantham M.V., Metzger R.M., Rectification by a monolayer of hexadecylquinolinium tricyanoquino-dimethanide between gold electrodes, Angew. Chem. Int. Ed., 2001, 40, 1749-1752.[Crossref]
  • [180] Metzger R.M., Xu T., Peterson I.R., Electrical rectification by a monolayer of hexadecylquinolinium tricyanoquinodimethanide measured between macroscopic gold electrodes, J. Phys. Chem. B, 2001, 105, 7280-7290.[Crossref]
  • [181] Zhou S., Liu Y., Qiu Y., Huang X., Li Y., Jiang L., Zhu D., Synthetic molecular rectifier of a Langmuir-Blodgett film based on a novel asymmetrically substituted dicyano-tri-tert-butylphthalocyanine, Adv. Funct. Mater., 2002, 12, 65-68.[Crossref]
  • [182] Collier C.P., Wong E.W., Belohradsky M., Raymo F.M., Stoddart J.F., Kuekes P.J., et al., Electronically configurable molecular-based logic gates, Science, 1999, 285, 391-394.
  • [183] Collier C.P., Mattersteig G., Wong E.W., Luo Y., Beverly K., Sampaio J., et al., A
  • [2]catenane-based solid state electronically reconfigurable switch, Science, 2000, 289, 1172-1175.
  • [184] Villares A., Lydon D.P., Porrès L., Beeby A., Low P.J., Cea P., Royo F.M., Preparation of ordered films containing a phenylene ethynylene oligomer by the Langmuir-Blodgett technique, J. Phys. Chem. B, 2007, 111, 7201-7209.[Crossref]
  • [185] Villares A., Martin S., Giner I., Diaz J., Lydon D.P., Low P.J., Cea P., The use of scanning polarization force microscopy to study the miscibility of a molecular wire candidate and an insulating fatty acid in mixed LB films, Soft Matter, 2008, 4, 1508-1514.[Crossref]
  • [186] Villares A., Pera G., Martín S., Nichols R.J., Lydon D.P., Applegarth L., et al., Fabrication, characterization, and electrical properties of Langmuir−Blodgett films of an acid terminated phenylene−ethynylene oligomer, Chem. Mater., 2010, 22, 2041-2049.[Crossref]
  • [187] Tang Z.X., Hicks R.K., Magyar R.J., Tretiak S., Gao Y., Wang H.L., Synthesis and characterization of amphiphilic phenylene ethynylene oligomers and their Langmuir-Blodgett films, Langmuir, 2006, 22, 8813-8820.[Crossref]
  • [188] Villares A., Lydon D.P., Robinson B.J., Ashwell G., Royo F.M., Low P.J., Cea P., Langmuir-Blodgett films incorporating molecular wire candidates of ester-substituted oligo(phenylene-ethynylene) derivatives, Surf. Sci., 2008, 602, 3683-3687.
  • [189] Ballesteros L.M., Martín S., Pera G., Schauer P.A., Kay N.J., López M.C., et al., Directionally oriented LB films of an OPE derivative: assembly, characterization, and electrical properties Langmuir, 2011, 27, 3600-3610.
  • [190] Xu Z.-G., Wu G.-P., Wang L.-J., Sun C.-L., Shi Z.-F., Zhang H.L., Wang Q., Distinct exciton migration pathways induced by steric hindrance in Langmuir-Blodgett films of two novel cruciform molecular wires, Chem. Phys. Lett., 2011, 518, 65-69.
  • [191] Donley C.L., Blackstock J.J., Stickle W.F., Stewart D.R., Williams R.S., In-situ infrared spectroscopy of buried organic monolayers: Influence of the substrate on titanium reactivity with a Langmuir-Blodgett film, Langmuir, 2007, 23, 7620-7625.[Crossref]
  • [192] Li X., Zhang, G. Bai, X., Sun X., Wang X., Wang E., Dai H., Highly conducting graphene sheets and Langmuir-Blodgett films, Nat. Nanotechnol., 2008, 3, 538-542.[Crossref]
  • [193] Cote L.J., Kim F.S., Huang J., Langmuir-Blodgett assembly of graphite oxide single layers, J. Am. Chem. Soc., 2009, 131, 1043-1049.[Crossref]
  • [194] Delamar M., Hitmi R., Pinson J., Saveant J.-M., Covalent modification of carbon surfaces by grafting of functionalizes aryl radicals produced from electrochemical reduction of diazonium salts, J. Am. Chem. Soc., 1992, 114, 5883-5884.[Crossref]
  • [195] Pinson J., Podvorica F., Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts, Chem. Soc. Rev., 2005, 34, 429-439.[Crossref]
  • [196] McCreery R.L., Wu J., Kalakodimi R.P., Electron transport and redox reactions in carbon-based molecular electronic junctions, Phys. Chem. Chem. Phys., 2006, 8, 2572-2590.[Crossref]
  • [197] McCreery R.L., Advanced carbon electrode materials for molecular electrochemistry, Chem. Rev., 2008, 108, 2646-2687.[Crossref]
  • [198] Ru J., Szeto B., Bonifas A., McCreery R.L., Microfabrication and integration of diazonium-based aromatic molecular junctions, ACS. Appl. Mater. Interf., 2010, 2, 3693-3701.[Crossref]
  • [199] Bélanger D., Pinson J., Electrografting: a powerful method for surface modification, Chem. Soc. Rev., 2011, 40, 3995-4048.[Crossref]
  • [200] Martin P., Della Rocca M.L., Anthore A., Lafarge P., Lacroix J.C., Organic electrodes based on grafted oligothiophene units in ultrathin, large-area molecular junctions, J. Am. Chem. Soc., 2012, 134, 154-157.
  • [201] Santos L., Ghilane J., Lacroix J.C., Formation of mixed organic layers by stepwise electrochemical reduction of diazonium compounds, J. Am. Chem. Soc., 2012, 134, 5476-5479.[Crossref]
  • [202] Santos L., Ghilane J., Martin P., Lacaze P.-C., Randriamahazaka H., Lacroix J.C., Host-Guest Complexation: A convenient route for the electroreduction of diazonium salts in aqueous media and the formation of composite materials, J. Am. Chem. Soc., 2010, 132, 1690-1698.[Crossref]
  • [203] Toupin M., Bélanger D., Thermal stability study of aryl modified carbon black by in situ generated diazonium salt, J. Phys. Chem.C., 2007, 111, 5394-5401.
  • [204] McCreery R.L., The merger of electrochemistry and molecular electronics, Chem. Rec., 2012, 12, 149-163.[Crossref]
  • [205] Koiry S.P., Aswal D.K., Saxena V., Padma N., Chauhan A.K., Joshi N., et al., Electrochemical grafting of octyltrichlorosilane monolayer on Si Appl. Phys. Lett., 2007, 90, 113118.[Crossref]
  • [206] Palacin S., Bureau C., Charlier J., Deniau G., Mouanda B., Viel P., Molecule-to-metal bonds: electrografting polymers on conducting surfaces, Chem. Phys. Chem., 2004, 5, 1468-1481.
  • [207] Barbier B., Pinson J., Desarmot G., Sánchez M., Electrochemical bonding of amines to carbon-fiber surfaces toward improved carbon-epoxy Composites, J. Electrochem. Soc., 1990, 137, 1757-1764.[Crossref]
  • [208] Gallardo I., Pinson J., Vilà N., Spontaneous attachment of amines to carbon and metallic surfaces, J. Phys. Chem. B, 2006, 110, 19521-19529.[Crossref]
  • [209] Brooksby P.A., Downard A.J., Yu S.S.C., Effect of applied potential on arylmethyl films oxidatively grafted to carbon surfaces, Langmuir, 2005, 21, 11304-11311.[Crossref]
  • [210] Ricci A.M., Calvo E.J., Martin S., Nichols R.J., Electrochemical scanning tunneling spectroscopy of redox-active molecules bound by Au-C bonds, J. Am. Chem. Soc., 2010, 132, 2494-2495.[Crossref]
  • [211] Laurentius L., Stoyanov S.R., Guserov S., Kovalenko A., Du R., Lopinski G.P., McDermott M.T., Diazonium-derived aryl films on gold nanoparticles: evidence for a carbon–gold covalent bond, ACS Nano, 2011, 5, 4219-4227.[Crossref]
  • [212] Haick H., Cahen D., Making contact: Connecting molecules electrically to the macroscopic world, Prog. Surf. Sci., 2008, 83, 217-261.[Crossref]
  • [213] Vuillaume D., Molecular-scale electronics, C. R. Phys., 2008, 9, 78-94.
  • [214] Akkerman H.B., de Boer B., Electrical conduction through single molecules and self-assembled monolayers, J. Phys.: Condens. Matter, 2008, 20, 013001 (20pp).[Crossref]
  • [215] Vuillaume D., Molecular nanoelectronics, Proc. IEEE, 2010, 98, 2111-2123.
  • [216] Walker A.V., Toward a new world of molecular devices: making metallic contacts to molecules, J. Vac. Sci. Technol. A, 2013, 31, 050816.[Crossref]
  • [217] Holmlin R.E., Haag R., Chabinyc M.L., Ismagilov R.F., Cohen A.E., Terfort A., et al., Electron transport through thin organic films in metal-insulator-metal junctions based on self-assembled monolayers, J. Am. Chem. Soc., 2001, 123, 5075-5085.[Crossref]
  • [218] Rampi M.A., Schueller O.J.A., Whitesides G.M., Alkanethiol self-assembled monolayers as the dielectric of capacitors with nanoscale thickness, Appl. Phys. Lett., 1998, 72, 1781-1783.[Crossref]
  • [219] Chiechi R.C., Weiss E.A., Dickey M.D., Whitesides G.M., Eutectic gallium-indium (EGaIn): a moldable liquid metal for electrical characterization of self-assembled monolayers, Angew. Chem. Int. Ed., 2008, 47, 142-144.[Crossref]
  • [220] Yaffe O., Scheres L., Segev L., Biller A., Ron I., Salomon E., et al., Hg/Molecular monolayer−Si junctions: electrical interplay between monolayer properties and semiconductor doping density, J. Phys. Chem. C., 2010, 114, 10270-10279.
  • [221] Popoff R.T.W., Kavanagh K.K., Yu H.-Z., Preparation of ideal molecular junctions: depositing non-invasive gold contacts on molecularly modified silicon, Nanoscale, 2011, 3, 1434-1445.[Crossref]
  • [222] Har-Lavan R., Yaffe O., Joshi P., Kazaz R., Cohen H., Cahen D., Ambient organic molecular passivation of Si yields near-ideal, Schottky-Mott limited, junctions, AIP Advances, 2012, 2, 012164-13.
  • [223] Wang W., Lee T., Kretzschmar I., Reed M.A., Inelastic electron tunneling spectroscopy of an alkanedithiol self-assembled monolayer, Nano Lett., 2004, 4, 643-646.[Crossref]
  • [224] Nakaya M., Shikishima M., Shibuta M., Hirata N., Eguchi T., Nakajima A., Molecular-scale and wide-energy-range tunneling spectroscopy on self-assembled monolayers of alkanethiol molecules, ACS Nano, 2012, 6, 8728-8734.[Crossref]
  • [225] Salomon A., Cahen D., Lindsay S., Tomfohr J., Engelkes V.B., Frisbie C.D., Comparison of electronic transport measurements on organic molecules, Adv. Mater., 2003, 15, 1881-1890.[Crossref]
  • [226] Petrangolini P., Alessandrini A., Berti L., Facci P., An electrochemical scanning tunneling microscopy study of 2-(6-mercaptoalkyl)hydroquinone molecules on Au(111), J. Am. Chem. Soc., 2010, 132, 7445-7453.[Crossref]
  • [227] Wold D.J., Frisbie C.D., Formation of metal-molecule-metal tunnel junctions: microcontacts to alkanethiol monolayers with a conducting AFM tip, J. Am. Chem. Soc., 2000, 122, 2970-2971.[Crossref]
  • [228] Wold D.J., Haag R., Rampi M.A., Frisbie C.D., Distance dependence of electron tunneling through self-assembled monolayers measured by conducting probe atomic force microscopy: unsaturated versus saturated molecular junctions, J. Phys. Chem. B, 2002, 106, 2813-2816.[Crossref]
  • [229] Wold D.J., Frisbie C.D., Fabrication and characterization of metal-molecule-metal junctions by conducting probe atomic force microscopy, J. Am. Chem. Soc., 2001, 123, 5549-5556.[Crossref]
  • [230] Ballesteros L.M., Martin S., Cortés J., Marqués-Gonzalez S., Pérez-Murano F., Nichols R.J., et al., From an organometallic monolayer to an organic monolayer covered by metal nanoislands: a simple thermal protocol for the fabrication of the top contact electrode in molecular electronic devices, Adv. Mater. Interfaces, 2014, DOI: 10.1002/admi.201400128.[Crossref]
  • [231] Walker A.V., Tighe T.B., Stapleton J., Haynie B.C., Upilli S., Allara D.L., Winograd N., Interaction of vapor-deposited Ti and Au with molecular wires, Appl. Phys. Lett., 2004, 84, 4008-4010.[Crossref]
  • [232] Walker A.V., Tighe T.B., Cabarcos O.M., Reinard M.D., Haynie B.C., Uppili S., et al., The dynamics of noble metal atom penetration through methoxy-terminated alkanethiolate monolayers, J. Am. Chem. Soc., 2004, 126, 3954-3963.[Crossref]
  • [233] Aswal D.K., Lenfant S., Guerin D., Yakhmi J.V., Vuillaume D., A tunnel current in self-assembled monolayers of 3-mercaptopropyltrimethoxysilane, Small, 2005, 1, 725-729.[Crossref]
  • [234] Hooper A., Fisher G.L., Konstadinidis K., Jung D., Nguyen H., Opila R., et al., Chemical effects of methyl and methyl ester groups on the nucleation and growth of vapor-deposited aluminum films, J. Am. Chem. Soc., 1999, 121, 8052-8064.[Crossref]
  • [235] Fisher G.L., Walker A.V., Hooper A.E., Tighe T.B., Bahnck K.B., Skriba H.T., et al., Bond insertion, complexation, and penetration pathways of vapor-deposited aluminum atoms with HO- and CH3O-terminated organic monolayers, J. Am. Chem. Soc., 2002, 124, 5528-5541.[Crossref]
  • [236] Ahn H., Whitten J.E., Vapor-deposition of aluminum on thiophene-terminated self-assembled monolayers on gold, J. Phys. Chem. B., 2003, 107, 6565-6572.[Crossref]
  • [237] de Boer B., Frank M.M., Chabal Y.J., Jiang W., Garfunkel E.L., Bao Z., Metallic contact formation for molecular electronics: interactions between vapor-deposited metals and self-assembled monolayers of conjugated mono- and dithiols, Langmuir, 2004, 20, 1539-1542.[Crossref]
  • [238] Weckenmann U., Mittler S., Krämer S., Aliganga A.K.A., Fisher R.A., A study on the selective organometallic vapor deposition of palladium onto self-assembled monolayers of 4,4’-biphenyldithiol, 4-biphenylthiol, and 11-mercaptoundecanol on polycrystalline silver, Chem. Mater., 2004, 16, 621-628.
  • [239] Baunach T., Ivanova V., Kolb D.M., Boyen H.G., Ziemann P., Buttner M., Oelhafen P., A new approach to the electrochemical metallization of organic monolayers: palladium deposition onto a 4,4’-dithiodipyridine self-assembled monolayer, Adv. Mater., 2004, 16, 2024-2028.[Crossref]
  • [240] Maitani M.M., Daniel T., Cabarcos O.M., Allara D.L., Nascent metal atom condensation in self-assembled monolayer matrices: coverage-driven morphology transitions from buried adlayers to electrically active metal atom nanofilaments to overlayer clusters during aluminum atom deposition on alkanethiolate/gold monolayers, J. Am. Chem. Soc., 2009, 131, 8016-8029.
  • [241] Maitani M.M., Allara D.L., Issues and challenges in vapor-deposited top metal contacts for molecule-based electronic devices, Top. Curr. Chem., 2012, 312, 239-274.
  • [242] Lovrinčić R., Kraynis O., Har-Lavan R., Haj-Yahya A.-E., Li W., Vilan A., Cahen D., A new route to nondestructive top-contacts for molecular electronics on Si: Pb evaporated on organic monolayers, J. Phys. Chem. Lett., 2013, 4, 426-430.[Crossref]
  • [243] Johnson R.W., Hultqvist A., Bent S.F., A brief review of atomic layer deposition: from fundamentals to applications, Mater Today, 2014, 17, 236-246.[Crossref]
  • [244] Hämäläinen J., Ritala M., Leskela M., Atomic layer deposition of noble metals and their oxides, Chem. Mater., 2014, 26, 786-801.[Crossref]
  • [245] Preiner M.J., Melosh N.A., Creating large area molecular electronic junctions using atomic layer deposition, Appl. Phys. Lett., 2008, 92, 213301.[Crossref]
  • [246] Seitz O., Dai M., Aguirre-Tostado F.S., Wallace R.M., Chabal Y.J., Copper-Metal Deposition on Self assembled monolayer for making top contacts in molecular electronic devices, J. Am. Chem. Soc., 2009, 131, 18159-18167.
  • [247] Akkerman H.B., Blom P.W.M., de Leeuw D.M., de Boer B., Towards molecular electronics with large-area molecular junctions, Nature, 2006, 441, 69-72.
  • [248] Tai Y., Shaporenko A., Noda H., Grunze M., Zharnikov M., Fabrication of stable metal films on the surface of self-assembled monolayers, Adv. Mater., 2005, 17, 1745-1749.[Crossref]
  • [249] Tai Y., Shaporenko A., Grunze M., Zharnikov M., Effect of irradiation dose in making an insulator from a self-assembled monolayer, J.Phys. Chem. B., 2005, 109, 19411-19415.[Crossref]
  • [250] Noda H., Tai Y., Shaporenko A., Grunze M., Zharnikov M., Electrochemical characterizations of nickel deposition on aromatic dithiol monolayers on gold electrodes, J.Phys. Chem. B., 2005, 109, 22371-22376.[Crossref]
  • [251] Chesneau F., Terfort A., Zharnikov M., Nickel deposition on fluorinated, aromatic self-assembled mono layers: chemically induced cross-linking as a tool for the preparation of well-defined top metal films, J. Phys. Chem. C., 2014, 118, 11763-11773.
  • [252] Dürr A.C., Schreiber F., Kelsch M., Carstanjen H.D., Dosch H., Morphology and thermal stability of metal contacts on crystalline organic thin films, Adv. Mater., 2002, 14, 961-963.[Crossref]
  • [253] Silien C., Buck M., On the role of extrinsic and intrinsic defects in the underpotential deposition of Cu on thiol-modified Au(111) electrodes, J. Phys. Chem. C., 2008, 112, 3881-3890.
  • [254] Popoff R.T.W., Zavareh A.A., Kavanagh K.L., Yu H.-Z., Reduction of gold penetration through phenyl-terminated alkyl monolayers on silicon, J. Phys. Chem. C., 2012, 116, 17040-17047.
  • [255] Pattanaik G., Shao W., Swami N., Zangari G., Electrolytic gold deposition on dodecanethiol-modified gold films, Langmuir, 2009, 24, 5031-5038.[Crossref]
  • [256] Chiu Y.-D., Dow W.-P., Krug K., Liu Y.-F., Lee Y.-L., Yau S.-L., Adsorption and desorption of Bis-(3-sulfopropyl) disulfide during Cu electrodeposition and stripping at Au electrodes, Langmuir, 2012, 28, 14476-14487.[Crossref]
  • [257] Silien C., Lahaye D., Caffio M., Schaub R., Champness N.R., Buck M., Electrodeposition of palladium onto a pyridine-terminated self-assembled monolayer, Langmuir, 2011, 27, 2567-2574.[Crossref]
  • [258] Daniel M.-C., Astruc D., Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev., 2004, 104, 293-346.[Crossref]
  • [259] Osorio H.M., Cea P., Ballesteros L.M., Gascon I., Marqués-González S., Nichols R.J., et al., Preparation of nascent molecular electronic devices from gold nanoparticles and terminal alkyne functionalised monolayer films, J. Mater. Chem. C., 2014, 2, 7348-7355.
  • [260] Abad J.M., Tesio A.Y., Pariente F., Lorenzo E., Reaction Mechanism of monoamine oxidase from QM/MM calculations, J. Phys. Chem. B, 2013, 117, 22087-22093.
  • [261] Xia Y., Whitesides G.M., Soft lithography, Angew. Chem. Int. Ed. , 1998, 37, 550-575.[Crossref]
  • [262] Loo Y.L., Willett R.L., Baldwin K.W., Rogers J.A., Interfacial chemistries for nanoscale transfer printing, J. Am. Chem. Soc., 2002, 124, 7654-7655.[Crossref]
  • [263] Loo Y.L., Lang D.V., Rogers J.A., Hsu J.W.P., Electrical contacts to molecular layers by nanotransfer printing, Nano Lett., 2003, 3, 913-917.[Crossref]
  • [264] Guerin D., Merckling C., Lenfant S., Wallart X., Pleutin S., Vuillaume D., Silicon-molecules-metal junctions by transfer printing: chemical synthesis and electrical properties, J. Phys. Chem. C., 2007, 111, 7947-7956.
  • [265] Vilan A., Cahen D., Soft contact deposition onto molecularly modified GaAs. Thin metal film flotation: principles and electrical effects, Adv. Funct. Mater., 2002, 12, 795-807.[Crossref]
  • [266] Haick H., Ambrico M., Ligonzo T., Tung R.T., Cahen D., Controlling semiconductor/metal junction barriers by incomplete, nonideal molecular monolayers, J. Am. Chem. Soc., 2006, 128, 6854-6869.[Crossref]
  • [267] Haick H., Cahen D., Contacting organic molecules by soft methods: towards molecule-based electronic devices, Acc. Chem. Res., 2008, 41, 359-366.[Crossref]
  • [268] Vilan A., Ghabboun J., Cahen D., Molecule-metal polarization at rectifying GaAs interfaces, J. Phys. Chem. B, 2003, 107, 6360-6376.[Crossref]
  • [269] Pookpanratana S., Robertson J.W.F., Jaye C., Fischer D.A., Richter C.A., Hacker C.A., Electrical and physical characterization of bilayer carboxylic acid-functionalized molecular layers, Langmuir, 2013, 29, 2083-2091.[Crossref]
  • [270] Bonifas A.P., McCreery R.L., ‘Soft’ Au, Pt and Cu contacts for molecular junctions through surface-diffusion-mediated deposition, Nat. Nanotechnol., 2010, 5, 612-617.[Crossref]
  • [271] Martin S., Pera G., Ballesteros L.M., Hope A.J., Marqués-González S., Low P.J., et al., Towards the fabrication of the top-contact electrode in molecular junctions by photoreduction of a metal precursor, Chem. Eur. J., 2014, 20, 3421-3426.[Crossref]
  • [272] Zangmeister C.D., van Zee R.D., Electroless deposition of copper onto 4-mercaptobenzoic acid self-assembled on gold, Langmuir, 2003, 19, 8065-8068.
  • [273] Lu P., Walker A.V., Investigation of the mechanism of electroless deposition of copper on functionalized alkanethiolate self-assembled monolayers adsorbed on gold, Langmuir, 2007, 23, 12577-12582.[Crossref]
  • [274] Aldakov D., Bonnassieux Y., Geffroy B., Palacin S., Selective electroless copper deposition on self-assembled dithiol monolayers, ACS Appl. Mater. Interfaces, 2009, 1, 584-589.[Crossref]
  • [275] Lu P., Shi Z., Walker A.V., Selective electroless deposition of copper on organic thin films with improved morphology, Langmuir, 2011, 27, 13022-13028.[Crossref]
  • [276] Shi Z., Walker A.V., Synthesis of nickel nanowires via electroless nanowire deposition on micropatterned substrates, Langmuir, 2011, 27, 11292-11295.[Crossref]
  • [277] Wang G., Kim Y., Choe M., Kim T.W., Lee T., A new approach for molecular electronic junctions with a multilayer graphene electrode, Adv. Mater., 2011, 23, 755-760.
  • [278] Li T., Hauptmann J.R., Wei Z., Petersen S., Bovet N., Vosch T., et al., Solution-processed ultrathin chemically derived graphene films as soft top contacts for solid-state molecular electronic junctions, Adv. Mater. , 2012, 24, 1333-1339.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.