Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2014 | 1 | 1 |

Article title

Identifying the crossover between growth regimes via in-situ conductance measurements in focused
electron beam induced deposition


Title variants

Languages of publication



Focused electron beam induced deposition
presents a promising technique for the fabrication of
nanostructures. However, due to the dissociation of
mostly organometallic precursor molecules employed for
the deposition process, prepared nanostructures contain
organic residues leading to rather low conductance of
the deposits. Post-growth treatment of the structures by
electron irradiation or in reactive atmospheres at elevated
temperatures can be applied to purify the samples.
Recently, an in-situ conductance optimization process
involving evolutionary genetic algorithm techniques has
been introduced leading to an increase of conductance
by one order of magnitude for tungsten-based deposits
using the precursor W(CO)6. This method even allows for
the optimization of conductance of nano-structures for
which post-growth treatment is not possible or desirable.
However, the mechanisms responsible for the observed
enhancement have not been studied in depth. In this
work, we identified the dwell-time dependent change of
conductivity of the samples to be the major contributor
to the change of conductance. Specifically, the chemical
composition drastically changes with a variation of dwelltime
resulting in an increase of the metal content by 15
at% for short dwell-times. The relative change of growth
rate amounts to less than 25 % and has a negligible
influence on conductance. We anticipate the in-situ
genetic algorithm optimization procedure to be of high
relevance for new developments regarding binary or
ternary systems prepared by focused electron or ion beam
induced deposition.








Physical description


1 - 7 - 2014
15 - 12 - 2014
26 - 2 - 2014


  • Physikalisches Institut,
    Goethe Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main,
  • Physikalisches Institut,
    Goethe Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main,
  • Physikalisches Institut,
    Goethe Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main,
  • Physikalisches Institut,
    Goethe Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main,


  • [1] M. Huth, F. Porrati, C. Schwalb, M. Winhold, R. Sachser, M.Dukic, J. Adams, and G. Fantner. Focused electron beaminduced deposition: A perspective. Beilstein Journal ofNanotechnology, 2012, 3, 597-619.[WoS][Crossref]
  • [2] A. Fernandez-Pacheco, L. Serrano-Ramon, J. M. Michalik, M.R. Ibarra, J. M. De Teresa, L. O’Brien, D. Petit, J. Lee, and R. P.Cowburn. Three dimensional magnetic nanowires grown byfocused electron-beam induced deposition. Scientific Reports,2013, 3, 1492.[WoS]
  • [3] W. F. van Dorp, B. van Someren, C. W. Hagen, and P. Kruit.Approaching the resolution limit of nanometer-scale electronbeam-induced deposition. Nano Letters, 2005, 5(7), 1303-1307.[Crossref]
  • [4] L. van Kouwen, A. Botman, and C. W. Hagen. Focused electronbeam-induced deposition of 3 nm dots in a scanning electronmicroscope. Nano Letters, 2009, 9(5), 2149-2152.[Crossref][WoS]
  • [5] G. Boero, I. Utke, T. Bret, N. Quack, M. Todorova, S.Mouaziz, P. Kejik, J. Brugger, R. S. Popovic, and P. Hoffmann.Submicrometer hall devices fabricated by focused electron beam-induced deposition. Applied Physics Letters, 2005,86(4), 042503.[Crossref]
  • [6] L. Serrano-Ramon, R. Cordoba, L. A. Rodriguez, C. Magen, E.Snoeck, C. Gatel, I. Serrano, M. R. Ibarra, and J. M. De Teresa.Ultrasmall func- tional ferromagnetic nanostructures grown byfocused electron-beam- induced deposition. Acs Nano, 2011,5(10), 7781-7787.[Crossref][WoS]
  • [7] C. H. Schwalb, C. Grimm, M. Baranowski, R. Sachser, F. Porrati,H. Reith, P. Das, J. Muller, F. Volklein, A. Kaya, and M. Huth. Atunable strain sensor using nanogranular metals. Sensors,2010, 10(11), 9847-9856.[Crossref]
  • [8] F. Kolb, K. Schmoltner, M. Huth, A. Hohenau, J. Krenn, A. Klug,E.J.W. List, and H. Plank. Variable tunneling barriers in FEBIDbased Pt-C metal-matrix nanocomposites as transducingelement for humidity sensing. Nanotechnology, 2013, 24,305501.[WoS][Crossref]
  • [9] M. Huth, A. Rippert, R. Sachser, and L. Keller. Probingnear-interface ferroelectricity by conductance modulation of anano-granular metal. submitted to Materials Research Express,2014.
  • [10] A. J. M. Mackus, N. F. W. Thissen, J. J. L. Mulders, P. H. F.Trompenaars, M. A. Verheijen, A. A. Bol, and W. M. M. Kessels.Direct- write atomic layer deposition of high-quality Ptnanostructures: Selective growth conditions and seed layerrequirements. Journal of Physical Chemistry C, 2013, 117(20),10788-10798.[WoS][Crossref]
  • [11] I. Utke, P. Hoffmann, and J. Melngailis. Gas-assisted focusedelectron beam and ion beam processing and fabrication.Journal of Vacuum Science & Technology B, 2008, 26(4),1197-1276.[Crossref]
  • [12] W. F. van Dorp and C. W. Hagen. A critical literature review offocused electron beam induced deposition. Journal of AppliedPhysics, 2008, 104(8), 081301.[WoS]
  • [13] L. Bernau, M. Gabureac, R. Erni, and I. Utke. Tunablenanosynthesis of composite materials by electron-impactreaction. Angewandte Chemie- international Edition, 2010,49(47), 8880-8884.[WoS][Crossref]
  • [14] T. Lukasczyk, M. Schirmer, H. P. Steinruck, and H. Marbach.Electron-beam-induced deposition in ultrahigh vacuum:Lithographic fabrication of clean iron nanostructures. Small,2008, 4(6), 841-846.[WoS][Crossref]
  • [15] T. Lukasczyk, M. Schirmer, H. P. Steinruck, and H. Marbach.Generation of clean iron structures by electron-beaminduceddeposition and selective catalytic decompositionof iron pentacarbonyl on Rh(110). Langmuir, 2009, 25(19),11930-11939.[Crossref][WoS]
  • [16] R. Cordoba, J. Sese, J. M. De Teresa, and M. R. Ibarra.High-purity cobalt nanostructures grown by focused-electronbeam-induced deposition at low current. MicroelectronicEngineering, 2010, 87(5-8), 1550-1553.[WoS][Crossref]
  • [17] F. Porrati, R. Sachser, C. H. Schwalb, A. S. Frangakis, andM. Huth. Tuning the electrical conductivity of Pt-containinggranular metals by postgrowth electron irradiation. Journal ofApplied Physics, 2011, 109(6), 063715.[Crossref]
  • [18] R. Sachser, F. Porrati, C. H. Schwalb, and M. Huth. Universalconductance correction in a tunable strongly couplednanogranular metal. Physical Review Letters, 2011, 107(20),206803.[WoS][Crossref]
  • [19] H. Plank, G. Kothleitner, F. Hofer, S. G. Michelitsch, C. Gspan,A. Hohenau, and J. R. Krenn. Optimization of post-growthelectron-beam curing for focused electron-beam-induced ptdeposits. Journal of Vacuum Science & Technology B, 2011,29(5), 051801.[WoS][Crossref]
  • [20] R. Sachser, H. Reith, D. Huzel, M. Winhold, and M. Huth.Catalytic purification of directly written nanostructured Ptmicroelectrodes, ACS Applied Materials & Interfaces, 2014, 6,15868-15874[WoS]
  • [21] S. Mehendale, J. J. L. Mulders, and P. H. F. Trompenaars. A newsequential EBID process for the creation of pure Pt structuresfrom MeCpPtMe3. Nanotechnology, 2013, 24(14), 145303.[Crossref][WoS]
  • [22] A. Botman, J. J. L. Mulders, R. Weemaes, and S. Mentink.Purification of platinum and gold structures after electronbeam-induced deposition. Nanotechnology, 2006, 17(15),3779-3785.[Crossref]
  • [23] H. Plank, J. H. Noh, J. D. Fowlkes, K. Lester, B. B. Lewis, andP. D. Rack. Electron-beam-assisted oxygen purification at lowtemperatures for electron-beam-induced Pt deposits: Towardspure and high-delitynanostructures. ACS Applied Materials &Interfaces, 2014, 6(2), 1018-1024.[WoS]
  • [24] A. Botman, J. J. L. Mulders, and C. W. Hagen. Creating purenanostructures from electron-beam-induced depositionusing purification techniques: a technology perspective.Nanotechnology, 2009, 20(37), 372001.[WoS][Crossref]
  • [25] N. A. Roberts, J. D. Fowlkes, G. A. Magel, and P. D. Rack.Enhanced material purity and resolution via synchronizedlaser assisted electron beam induced deposition of platinum.Nanoscale, 2013, 5(1), 408-415.[Crossref][WoS]
  • [26] P. M. Weirich, M. Winhold, C. H. Schwalb, and M. Huth. Insitu growth optimization in focused electron-beam induceddeposition. Beilstein Journal of Nanotechnology, 2013, 4,919-926.[WoS][Crossref]
  • [27] P. C. Hoyle, M. Ogasawara, J. R. A. Cleaver, and H. Ahmed.Electrical-resistance of electron-beam-induced deposits fromtungsten hexacarbonyl. Applied Physics Letters, 1993, 62(23),3043-3045.[Crossref]
  • [28] M. Huth, D. Klingenberger, C. Grimm, F. Porrati, and R. Sachser.Conductance regimes of W-based granular metals preparedby electron beam induced deposition. New Journal of Physics,2009, 11, 033032.[WoS][Crossref]
  • [29] F. Porrati, R. Sachser, and M. Huth. The transientelectrical conductivity of W-based electron-beam-induceddeposits during growth, irradiation and exposure to air.Nanotechnology, 2009, 20(19), 195301.[Crossref][WoS]
  • [30] M. Winhold, P.M. Weirich, C.H. Schwalb, and M. Huth.Modeling the in-situ conductance optimization process infocused electron-beam-induced deposition. MicroelectronicEngineering, 2014, 121(0), 42-46.[Crossref][WoS]
  • [31] J. D. Fowlkes and P. D. Rack. Fundamental electron-precursorsolidinteractions derived from time-dependentelectron-beam-induced deposition simulations andexperiments. ACS Nano, 2010, 4(3), 1619-1629.[WoS][Crossref]
  • [32] I. Utke, V. Friedli, M. Purrucker, and J. Michler. Resolution infocused electron- and ion-beam induced processing. Journal ofVacuum Science & Technology B, 2007, 25(6), 2219-2223.[WoS][Crossref]
  • [33] S. G. Rosenberg, M. Barclay, and D. H. Fairbrother. Electroninduced reactions of surface adsorbed tungsten hexacarbonyl(W(CO)6). Physical Chemistry Chemical Physics, 2013, 15(11),4002-4015.[Crossref]
  • [34] E. S. Sadki, S. Ooi, and K. Hirata. Focused-ion-beam-induceddeposition of superconducting nanowires. Applied PhysicsLetters, 2004, 85(25), 6206-6208.[Crossref]
  • [35] D. Spoddig, K. Schindler, P. Rodiger, J. Barzola-Quiquia, K.Fritsch, H. Mulders, and P. Esquinazi. Transport propertiesand growth parameters of PdC and WC nanowires preparedin a dual-beam microscope. Nanotechnology, 2007, 18(49),495202.[Crossref][WoS]
  • [36] J. M. De Teresa, A. Fernandez-Pacheco, R. Cordoba, J. Sese,R. Ibarra,I. Guillamon, H. Suderow, and S. Vieira. Transportproperties of superconducting amorphous w-based nanowiresfabricated by focused-ion-beam-induced-deposition forapplications in nanotechnology. MRS Online ProceedingsLibrary, 2009, 1, 1180.
  • [37] I. J. Luxmoore, I. M. Ross, A. G. Cullis, P. W. Fry, J. Orr, P. D.Buckle, and J. H. Jefferson. Low temperature electrical characterizationof tungsten nanowires fabricated by electron andion beam induced chemical vapor deposition. Thin Solid Films,2007, 515(17), 6791-6797.
  • [38] H. Langfischer, B. Basnar, H. Hutter, and E. Bertagnolli.Evolution of tungsten film deposition induced by focused ionbeam. Journal of Vacuum Science & Technology A, 2002, 20(4),1408-1415.[WoS][Crossref]
  • [39] J. M. De Teresa, R. Cordoba, A. Fernandez-Pacheco, O. Montero,P. Strichovanec, and M. R. Ibarra. Origin of the difference inthe resistivity of as-grown focused-ion- and focused-electronbeam-induced Pt nanodeposits. Journal of Nanomaterials,2009, 936863.[WoS]
  • [40] K. Muthukumar, R. Valenti, and H. O. Jeschke. Simulation ofstructural and electronic properties of amorphous tungstenoxycarbides. New Journal of Physics, 2012, 14(11), 113028.[Crossref]
  • [41] G. E. Moore. Dissociation of adsorbed Co by slow electrons.Journal of Applied Physics, 1961, 32(7), 1241.[Crossref]
  • [42] R.M. Lambert and C.M. Comrie. The role of primary andsecondary electrons in electron induced desorption anddissociation: CO on Pt(111). Surface Science, 1973, 38(1),197-209.[Crossref]
  • [43] P. M. Weirich, C. H. Schwalb, M. Winhold, and M. Huth.Superconductivity in the system MoxCyGazOδ prepared byfocused ion beam induced deposition. Journal of AppliedPhysics, 2014, 115(17).[WoS][Crossref]
  • [44] M. Winhold, C. H. Schwalb, F. Porrati, R. Sachser, A. S.Frangakis, B. Kampken, A. Terfort, N. Auner, and M. Huth.Binary Pt-Si nanostructures prepared by focused electronbeam-induced deposition. ACS Nano, 2011, 5(12), 9675-9681.[Crossref][WoS]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.