PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2014 | 1 | 1 |
Article title

Magnetic properties of cobalt microwires measured by piezoresistive cantilever magnetometry

Content
Title variants
Languages of publication
EN
Abstracts
EN
We present the magnetic characterization of cobalt wires grown by focused electron beam-induced deposition (FEBID) and studied using static piezoresistive cantilever magnetometry. We have used previously developed high force sensitive submicron-thick silicon piezoresistive cantilevers. High quality polycrystalline cobalt microwires have been grown by FEBID onto the free end of the cantilevers using dual beam equipment. In the presence of an external magnetic field, the magnetic cobalt wires become magnetized, which leads to the magnetic field dependent static deflection of the cantilevers. We show that the piezoresistive signal from the cantilevers, corresponding to a maximum force of about 1 nN, can be measured as a function of the applied magnetic field with a good signal to noise ratio at room temperature. The results highlight the flexibility of the FEBID technique for the growth of magnetic structures on specific substrates, in this case piezoresistive cantilevers.
Publisher

Journal
Year
Volume
1
Issue
1
Physical description
Dates
received
13 - 5 - 2014
online
19 - 9 - 2014
accepted
7 - 7 - 2014
Contributors
author
  • Istituto Italiano di Tecnologia (IIT), Center for Bio-Molecular Nanotechnologies, Via Barsanti, 73010 Arnesano, Italy/Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), 08193 Bellaterra, Spain
  • Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, Universidad de Zaragoza-CSIC, Facultad de Ciencias, 50009 Zaragoza, Spain/ Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain
author
  • Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain
  • Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, Universidad de Zaragoza-CSIC, Facultad de Ciencias, 50009 Zaragoza, Spain/ Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain, deteresa@unizar.es
  • Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), 08193 Bellaterra, Spain
author
  • Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), 08193 Bellaterra, Spain
References
  • [1] Azzerboni B., Pareti L., Asti G. (Eds.), Magnetic nanostructures in modern technology: Spintronics, Magnetic MEMS and Recording, Springer, New York, 2008.
  • [2] Cowburn R.P., Property variation with shape in magnetic nanoelements, J. Phys. D: Appl. Phys., 2000, 33, R1-R16.
  • [3] Utke I., Hofmann P., Melngailis J., Gas-assisted focused electron beam and ion beam processing and fabrication, J. Vac. Sci. Technol. B, 2008, 26, 1197-1276.[Crossref][WoS]
  • [4] van Dorp W. F., Hagen C. W., A critical literature review of focused electron beam induced deposition, J. Appl. Phys., 2008, 104, 081301 (42pp).[Crossref][WoS]
  • [5] Fernández-Pacheco A., De Teresa J.M., Szkudlarek A., Córdoba R., Ibarra M.R., Petit D., O’Brien L., Zeng H.T., Lewis E.R., Read D.E., Cowburn R.P., Magnetization reversal in individual cobalt micro- and nanowires grown by focused-electron-beaminduced- deposition, Nanotechnology, 2009, 20, 475704 (9pp).[Crossref][WoS]
  • [6] Fernández-Pacheco A., Serrano-Ramón L., Michalik J.M., Ibarra M.R., De Teresa J.M., O’Brien L., Petit D., Lee J., Cowburn R.P., Three dimensional magnetic nanowires grown by focused electron-beam induced deposition, Scient. Rep., 2013, 3, 1492 (5pp).
  • [7] Jaafar M., Serrano-Ramón L., Iglesias-Freire O., Fernández- Pacheco A., Ibarra M.R., De Teresa J.M., Asenjo A., Hysteresis loops of individual Co nanostripes measured by magnetic force microscopy, Nanoscale Res. Lett., 2011, 6, 407 (6 pp).[WoS]
  • [8] Ekinci K.L., Roukes M.L., Nanoelectromechanical systems, Rev, Sci. Instrum., 2005, 76, 061101 (12pp).[Crossref]
  • [9] Chaste J., Eichler A., Moser J., Ceballos G., Rurali R., Bachtold A., A nanomechanical mass sensor with yoctogram resolution, Nature Nanotech., 2012, 7, 301-304.[WoS]
  • [10] Rugar D., Budakian R., Mamin H.J., Chui B.W., Single spin detection by magnetic resonance force microscopy, Nature, 2004, 430, 329-332.
  • [11] Losby J., Burgess J.A.J., Holt C.M.B., Westwood J.N., Mitlin D., Hiebert W.K., Freeman M.R., Nanomechanical torque magnetometry of permalloy cantilevers, J. Appl. Phys., 2010, 108, 123910 (5pp).[WoS][Crossref]
  • [12] Li M., Tang H.X., Roukes M.L., Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications, Nature Nanotech., 2007, 2, 114-120.[WoS]
  • [13] Willemin M., Rossel C., Brugger J., Despont M.H., Rothuizen H., Vettiger P., Hofer J., Keller H., Piezoresistive cantilever designed for torque magnetometry, J. Appl. Phys., 1998, 83, 1163-1170.
  • [14] Villanueva G., Montserrat J., Pérez-Murano F., Rius G., Bausells J., Submicron piezoresistive cantilevers in a CMOS-compatible technology for intermolecular force detection, Microelectron. Eng., 2004, 73-74, 480-486.
  • [15] Villanueva G., Plaza J.A., Montserrat J., Pérez-Murano F., Bausells J., Crystalline silicon cantilevers for piezoresistive detection of biomolecular forces, Microelectron. Eng., 2008, 85, 1120-1123.[WoS]
  • [16] Tosolini G., Villanueva L.G., Pérez-Murano F., Bausells J., Fast on-wafer electrical, mechanical, and electromechanical characterization of piezoresistive cantilever force sensors, Rev. Sci. Instrum., 2012, 83, 015002 (7pp).[Crossref][WoS]
  • [17] Tosolini G., Scarponi F., Cannistraro S., Bausells J., Biomolecule recognition using piezoresistive nanomechanical force probes, Appl. Phys. Lett., 2013, 102, 253701 (5pp).[Crossref][WoS]
  • [18] Fernández-Pacheco A., De Teresa J.M., Córdoba R., Ibarra M.R., Magnetotransport properties of high-quality cobalt nanowires grown by focused-electron-beam-induced deposition, J. Phys. D: Appl. Phys., 2009, 42, 055005 (6pp).
  • [19] Tripathi S.K., Shukla N., Dhamodaran S., Kulkarni V.N., Controlled manipulation of carbon nanopillars and cantilevers by focused ion beam, Nanotechnology, 2008, 19, 205302 (6pp).[PubMed][Crossref][WoS]
  • [20] Rajput N.S., Banerjee A., Verma H.C., Electron- and ion-beaminduced maneuvering of nanostructures: phenomenon and applications, Nanotechnology, 2011, 22, 485302 (7pp).[Crossref][WoS]
  • [21] Gysin U., Rast S., Aste A., Speliotis T., Werle C., Meyer E., Magnetic properties of nanomagnetic and biomagnetic systems analyzed using cantilever magnetometry, Nanotechnology, 2011, 22, 285715 (8pp).[Crossref][WoS][PubMed]
  • [22] Utke I., Hoffmann P., Berger R., Scandella L., High-resolution magnetic Co supertips grown by a focused electron beam, Appl. Phys. Lett., 2002, 80, 4792-4794.
  • [23] Belova L.M., Hellwig O., Dobisz E., Dahlberg E.D., Rapid preparation of electron beam induced deposition Co magnetic force microscopy tips with 10 nm spatial resolution, Rev. Sci. Instrum., 2012, 83, 093711 (4pp).[WoS]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_nanofab-2014-0008
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.