Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
Using focused-electron-beam-induced
deposition, Cobalt magnetic nanospheres with diameter
ranging between 100 nm and 300 nm are grown at the tip
of ultra-soft cantilevers. By monitoring the mechanical
resonance frequency of the cantilever as a function of
the applied magnetic field, the hysteresis curve of these
individual nanospheres are measured. This enables the
evaluation of their saturation magnetization, found to
be around 430 emu/cm3 independent of the size of the
particle, and to infer that the magnetic vortex state is
the equilibrium configuration of these nanospheres at
remanence.SEM image of a 200 nm Co nanosphere grown at
the tip of an ultra-soft cantilever by focus electron beam induced
deposition.
deposition, Cobalt magnetic nanospheres with diameter
ranging between 100 nm and 300 nm are grown at the tip
of ultra-soft cantilevers. By monitoring the mechanical
resonance frequency of the cantilever as a function of
the applied magnetic field, the hysteresis curve of these
individual nanospheres are measured. This enables the
evaluation of their saturation magnetization, found to
be around 430 emu/cm3 independent of the size of the
particle, and to infer that the magnetic vortex state is
the equilibrium configuration of these nanospheres at
remanence.SEM image of a 200 nm Co nanosphere grown at
the tip of an ultra-soft cantilever by focus electron beam induced
deposition.
Publisher
Journal
Year
Volume
Issue
Physical description
Dates
published
1 - 1 - 2014
accepted
15 - 5 - 2014
received
2 - 4 - 2014
online
26 - 6 - 2014
Contributors
author
-
Service de Physique
de l’État Condensé (CNRS URA 2464), CEA Saclay, 91191 Gif-sur-
Yvette, France
author
-
Service de Physique
de l’État Condensé (CNRS URA 2464), CEA Saclay, 91191 Gif-sur-
Yvette, France -
Institute of Physics, Kazan Federal University,
Kazan 420008, Russian Federation
author
-
Service de Physique
de l’État Condensé (CNRS URA 2464), CEA Saclay, 91191 Gif-sur-
Yvette, France
author
-
Service de Physique
de l’État Condensé (CNRS URA 2464), CEA Saclay, 91191 Gif-sur-
Yvette, France
author
-
Laboratorio de Microscopías
Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA),
Universidad de Zaragoza, Mariano Esquillor 50018 Zaragoza, Spain
author
-
Laboratorio de Microscopías
Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA),
Universidad de Zaragoza, Mariano Esquillor 50018 Zaragoza, Spain -
Instituto de Ciencia de Materiales de Aragón
(ICMA), Departamento de Física de la Materia Condensada,
Universidad de Zaragoza-CSIC, Pedro Cerbuna 12, 50009 Zaragoza,
Spain
References
- [1] Rugar D., Mamin H. J., Guethner P., Lambert S. E., Stern J.E., McFadyen I., Yogi T., Magnetic force microscopy: Generalprinciples and application to longitudinal recording media, J.Appl. Phys., 1990, 68, 1169-1183.[Crossref]
- [2] Shinjo T., Okuno T., Hassdorf R., Shigeto K., Ono T., MagneticVortex Core Observation in Circular Dots of Permalloy, Science,2000, 289, 930-932.
- [3] Sidles J.A., Garbini J.L., Bruland K.J., Rugar D., Züger O., HoenS., Yannoni C.S., Magnetic resonance force microscopy, Rev.Mod. Phys., 1995, 67, 249-265.
- [4] Rugar D., Budakian R., Mamin H.J., Chui B.W., Single spindetection by magnetic resonance force microscopy, Nature,2004, 430, 329-332.
- [5] Wolny F., Obukhov Y., Mühl T., Weißker U., Philippi S.,Leonhardt A., et al., Quantitative magnetic force microscopy on permalloy dots using an iron filled carbon nanotube probe,Ultramicroscopy, 2011, 111, 1360-1365.[WoS]
- [6] Hamadeh A., de Loubens G., Naletov V.V., Grollier J., UlysseC., Cros V., Klein O., Autonomous and forced dynamics in aspin-transfer nano-oscillator: Quantitative magnetic-resonanceforce microscopy, Phys. Rev. B, 2012, 85, 140408.[Crossref][WoS]
- [7] Mamin H.J., Rettner C.T., Sherwood M.H., Gao L., Rugar D., Highfield-gradient dysprosium tips for magnetic resonance forcemicroscopy, Appl. Phys. Lett., 2012, 100, 013102.[Crossref]
- [8] Mamin H.J., Rugar D., Sub-attonewton force detectionat millikelvin temperatures, Appl. Phys. Lett., 2001, 79,3358-3360.[Crossref]
- [9] Degen C.L., Poggio M., Mamin H.J., Rettner C.T., Rugar D.,Nanoscale magnetic resonance imaging, Proc. Natl. Acad. Sci.,2009, 106, 1313-1317.[Crossref]
- [10] Hickman S.A., Moore E.W., Lee S.-G., Longenecker J.G., WrightS.J., Harrell L.E., Marohn J.A., Batch-fabrication of cantileveredmagnets on attonewton-sensitivity mechanical oscillators forscanned-probe nanoscale magnetic resonance imaging, ACSNano, 2010, 4, 7141-7150.[WoS][Crossref]
- [11] Klein O., de Loubens G., Naletov V.V., Boust F., GuilletT., Hurdequint H., et al., Ferromagnetic resonance forcespectroscopy of individual submicron-size samples, Phys. Rev.B, 2008, 78, 144410.[Crossref][WoS]
- [12] Lee I., Obukhov Y., Xiang G., Hauser A., Yang F., Banerjee P.,et al., Nanoscale scanning probe ferromagnetic resonanceimaging using localized modes, Nature, 2010, 466, 845-848.[WoS]
- [13] Banerjee P., Wolny F., Pelekhov D.V., Herman M.R., Fong K.C.,Weissker U., et al., Magnetization reversal in an individual 25nm iron-filled carbon nanotube, Appl. Phys. Lett., 2010, 96,252505.[WoS][Crossref]
- [14] Utke I., Hoffmann P., Berger R., Scandella L., High-resolutionmagnetic Co supertips grown by a focused electron beam, Appl.Phys. Lett., 2002, 80, 4792-4794.[Crossref]
- [15] Fernández-Pacheco A., de Teresa J.M., Córdoba R., Ibarra M.R.,Magnetotransport properties of high-quality cobalt nanowiresgrown by focused-electron-beam-induced deposition, J. Phys.D Appl. Phys., 2009, 42, 055005.[Crossref]
- [16] Belova L.M., Hellwig O., Dobisz E., Dahlberg E.D., Rapidpreparation of electron beam induced deposition Co magneticforce microscopy tips with 10 nm spatial resolution, Rev. Sci.Instrum., 2012, 83, 093711.[PubMed][Crossref][WoS]
- [17] Chia H.-J., Guo F., Belova L.M., McMichael R.D., NanoscaleSpin Wave Localization Using Ferromagnetic Resonance ForceMicroscopy, Phys. Rev. Lett., 2012, 108, 087206.[Crossref][PubMed][WoS]
- [18] Guo F., Belova L.M., McMichael R.D., Spectroscopy and Imagingof Edge Modes in Permalloy Nanodisks, Phys. Rev. Lett., 2013,110, 017601.[PubMed][Crossref][WoS]
- [19] Lee J., Yoo M.-W., Han D.-S., Kim S.-K., Size-selective resonantexcitation of soft magnetic nano-spheres of three-dimensionalmagnetic vortex, arXiv:1311.0346.
- [20] Pylypovskyi O.V., Sheka D.D., Gaididei Y., Bloch point structurein a magnetic nanosphere, Phys. Rev. B, 2012, 85, 224401.[Crossref]
- [21] Johnson P., Gangopadhyay A.K., Kalyanaraman R., Nussinov Z.,Demagnetization-borne microscale skyrmions, Phys. Rev. B,2012, 86, 064427.[WoS][Crossref]
- [22] de Loubens G., Naletov V.V., Klein O., Youssef J.B., BoustF., Vukadinovic N., Magnetic Resonance Studies of theFundamental Spin-Wave Modes in Individual Submicron Cu/NiFe/Cu Perpendicularly Magnetized Disks, Phys. Rev. Lett.,2007, 98, 127601.[Crossref][WoS]
- [23] de Loubens G., Riegler A., Pigeau B., Lochner F., Boust F.,Guslienko K.Y., et al., Bistability of Vortex Core Dynamics in aSingle Perpendicularly Magnetized Nanodisk, Phys. Rev. Lett.,2009, 102, 177602.[Crossref][WoS]
- [24] Naletov V.V., de Loubens G., Albuquerque G., Borlenghi S.,Cros V., Faini G., et al., Identification and selection rules of thespin-wave eigenmodes in a normally magnetized nanopillar,Phys. Rev. B, 2011, 84, 224423.[Crossref][WoS]
- [25] Pigeau B., de Loubens G., Klein O., Riegler A., Lochner F.,Schmidt G., Molenkamp L.W., Optimal control of vortex-corepolarity by resonant microwave pulses, Nature Phys., 2011, 7,26-31.[Crossref][WoS]
- [26] Pigeau B., Hahn C., de Loubens G., Naletov V.V., KleinO., Mitsuzuka K., et al., Measurement of the DynamicalDipolar Coupling in a Pair of Magnetic Nanodisks Using aFerromagnetic Resonance Force Microscope, Phys. Rev. Lett.,2012, 109, 247602.[Crossref][WoS]
- [27] Serrano-Ramón L., Córdoba R., Rodriguez L.A., Magén C.,Snoeck E., Gatel C., et al., Ultrasmall Functional FerromagneticNanostructures Grown by Focused Electron-Beam-InducedDeposition, ACS Nano, 2011, 5, 7781-7787.[Crossref][WoS]
- [28] De Teresa J.M., Córdoba R., Arrays of Densely Packed IsolatedNanowires by Focused Beam Induced Deposition Plus Ar+Milling, ACS Nano, 2014, 8, 3788-3795.[Crossref][PubMed][WoS]
- [29] Córdoba R., Fernández-Pacheco R., Fernández-Pacheco A.,Gloter A., Magén C., Stephan O., et al., Nanoscale chemical andstructural study of Co-based FEBID structures by STEM-EELSand HRTEM, Nanoscale Res. Lett., 2011, 6, 592.[WoS][Crossref]
- [30] Fernández-Pacheco A., de Teresa J.M., Szkudlarek A., CórdobaR., Ibarra M.R., Petit D., et al., Magnetization reversal inindividual cobalt micro- and nanowires grown by focusedelectron-beam-induced-deposition, Nanotechnology, 2009, 20,475704.[Crossref][WoS]
- [31] Marohn J.A., Fainchtein R., Smith D.D., An optimal magnetic tipconfiguration for magnetic-resonance force microscopy, Appl.Phys. Lett., 1998, 73, 3778-3780.
- [32] Stipe B.C., Mamin H.J., Stowe T.D., Kenny T.W., RugarD., Magnetic dissipation and fluctuations in individualnanomagnets measured by ultrasensitive cantilevermagnetometry, Phys. Rev. Lett., 2001, 86, 2874-2877.[PubMed][Crossref]
- [33] Gysin U., Rast S., Aste A., Speliotis T., Werle C., Meyer E.,Magnetic properties of nanomagnetic and biomagneticsystems analyzed using cantilever magnetometry,Nanotechnology, 2011, 22, 285715.[Crossref][WoS][PubMed]
- [34] Albrecht T.R., Grütter P., Horne D., Rugar D., Frequencymodulation detection using high-Q cantilevers for enhancedforce microscope sensitivity, J. Appl. Phys., 1991, 69, 668-673.[Crossref]
- [35] Charbois V., Détection Mécanique de la Résonance Ferromagnétique,Université Paris 7, 2003.
- [36] Tandon S., Beleggia M., Zhu Y., De Graef M., On thecomputation of the demagnetization tensor for uniformlymagnetized particles of arbitrary shape. Part I: Analyticalapproach, J. Magn. Magn. Mater., 2004, 271, 9-26.
- [37] Thiaville A., García J.M., Dittrich R., Miltat J., Schrefl T.,Micromagnetic study of Bloch-point-mediated vortex corereversal, Phys. Rev. B, 2003, 67, 094410.
- [38] Snoeck E., Gatel C., Lacroix L.M., Blon T., Lachaize S., CarreyJ., et al., Magnetic Configurations of 30 nm Iron Nanocubes Studied by Electron Holography, Nano Lett., 2008, 8,4293-4298.[WoS][Crossref]
- [39] Biziere N., Gatel C., Lassalle-Balier R., Clochard M.C., WegroweJ.E., Snoeck E., Imaging the Fine Structure of a MagneticDomain Wall in a Ni Nanocylinder, Nano Letters, 2013, 13,2053-2057.[WoS][Crossref]
- [40] Tetienne J.-P., Hingant T., Rondin L., Rohart S., Thiaville A., RochJ.-F., Jacques V., Quantitative stray field imaging of a magneticvortex core, Phys. Rev. B, 2013, 88, 214408.[Crossref]
- [41] Belova L.M., Dahlberg E.D., Riazanova A., Mulders J.J.L.,Christophersen C., Eckert J., Rapid electron beam assistedpatterning of pure cobalt at elevated temperatures via seededgrowth, Nanotechnology, 2011, 22, 145305.[PubMed][Crossref][WoS]
- [42] Fernández-Pacheco A., Serrano-Ramón L., Michalik J.M., IbarraM.R., de Teresa J.M., O’Brien L., et al., Three dimensionalmagnetic nanowires grown by focused electron-beam induceddeposition, Scientific Reports, 2013, 3, 1492.
- [43] Lavrijsen R., Córdoba R., Schoenaker F.J., Ellis T.H., BarconesB., Kohlhepp J.T., et al., Fe:O:C grown by focused-electronbeam-induced deposition: magnetic and electric properties,Nanotechnology, 2011, 22, 025302.[Crossref]
- [44] Gavagnin M., Wanzenboeck H.D., Belić D., Bertagnolli E.,Synthesis of Individually Tuned Nanomagnets for NanomagnetLogic by Direct Write Focused Electron Beam InducedDeposition, ACS Nano, 2013, 7, 777-784.[Crossref][WoS]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_nanofab-2014-0006