Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2014 | 1 | 1 |

Article title

FEBID fabrication and magnetic characterization
of individual nano-scale and micro-scale Co


Title variants

Languages of publication



This work gives an illustration of the viability of
FEBID to fabricate magnetic nano- and micro-structures
and it demonstrates that by means of a combination
of MOKE microscopy and MFM, one is able to analyze
the size and shape effects in individual magnetic cobalt
structures. With the help of our magnetic and functional
study, we are able to demonstrate that by using FEBID,
cobalt of uniform thickness and magnetic response can
be deposited over several micron-size areas, establishing
a most crucial ingredient of reliable structure and device
fabrication. Furthermore, we show the suitability of
FEBID to fabricate functional and complex 3-dimensional
magnetic structures. The issue of unintended secondary
deposits in FEBID is discussed, and a Xe-ion milling posttreatment
for its removal is proposed and demonstrated
as a successful pathway towards the fabrication of
functionally independent magnetic nano-structures.








Physical description


1 - 1 - 2014
26 - 6 - 2014
27 - 2 - 2014
6 - 5 - 2014


  • CIC nanoGUNE Consolider, Tolosa
    Hiribidea 76, E-20018 Donostia-San Sebastian, Spain,
  • CIC nanoGUNE Consolider, Tolosa
    Hiribidea 76, E-20018 Donostia-San Sebastian, Spain,
  • CIC nanoGUNE Consolider, Tolosa
    Hiribidea 76, E-20018 Donostia-San Sebastian, Spain,
  • CIC nanoGUNE Consolider, Tolosa
    Hiribidea 76, E-20018 Donostia-San Sebastian, Spain,
  • Ikerbasque, Basque Foundation for
    Science, E-48011 Bilbao, Spain
  • CIC nanoGUNE Consolider, Tolosa
    Hiribidea 76, E-20018 Donostia-San Sebastian, Spain,
  • Ikerbasque, Basque Foundation for
    Science, E-48011 Bilbao, Spain
  • CIC nanoGUNE Consolider, Tolosa
    Hiribidea 76, E-20018 Donostia-San Sebastian, Spain,


  • [1] Piramanayagam S. N., Srinivasan K., Recording media researchfor future hard disk drives, J. Magn. Magn. Mater., 2009, 321,485–494.[WoS]
  • [2] Miller M. M., Prinz G. A., Cheng S.-F, Bounnak S., Detection of amicron-sized magnetic sphere using a ring-shaped anisotropicmagnetoresistance-based sensor : A model for a magnetoresistance-based biosensor, Appl. Phys. Lett., 2002, 81, 2211.[Crossref]
  • [3] Allwood D. A., Xiong G., Faulkner C. C., Atkinson D., Petit D.,Cowburn R. P., Magnetic domain-wall logic, Science, 2005, 309,1688–92.
  • [4] Repain V., Jamet J.-P., Vernier N., Bauer M., Ferré J., ChappertC., Gierak J., Mailly D., Magnetic interactions in dot arrays withperpendicular anisotropy, J. Appl. Phys., 2004, 95, 2614.[Crossref]
  • [5] Berger A., Lengsfield B., Ikeda Y., Determination of intrinsicswitching field distributions in perpendicular recording media,J. Appl. Phys., 2006, 99, 08E705.
  • [6] Berger A., Supper N., Ikeda Y., Lengsfield B., Moser A.,Fullerton E. E., Improved media performance in optimallycoupled exchange spring layer media, Appl. Phys. Lett., 2008,93, 122502.[Crossref][WoS]
  • [7] Hovorka O., Liu Y., Dahmen K. A., Berger A., Simultaneousdetermination of intergranular interactions and intrinsicswitching field distributions in magnetic materials., Appl. Phys.Lett., 2009, 95, 192504.[Crossref][WoS]
  • [8] Fernández-Pacheco A., De Teresa J. M., Szkudlarek A., CórdobaR., Ibarra M. R., Petit D., O’Brien L., Zeng H. T., Lewis E. R.,Read D. E., et al. Magnetization reversal in individual cobaltmicro- and nanowires grown by focused-electron-beaminduced-deposition, Nanotechnology, 2009, 20, 475704.[Crossref][WoS]
  • [9] Breitkreutz S., Kiermaier J., Vijay Karthik S., Csaba G., Schmitt-Landsiedel D., Becherer M., Controlled reversal of Co/Pt dots fornanomagnetic logic applications, J. Appl. Phys., 2012, 111, 07A715.[WoS]
  • [10] Nikulina E., Idigoras O., Vavassori P., Chuvilin A., Berger A.,Magneto-optical magnetometry of individual 30 nm cobaltnanowires grown by electron beam induced deposition, Appl.Phys. Lett., 2012, 100, 142401.[Crossref]
  • [11] Neumann A., Thönnissen C., Frauen A., Hesse S., Meyer A.,Oepen H. P., Probing the magnetic behavior of single nanodots,Nano Lett., 2013, 13, 2199.[PubMed][Crossref][WoS]
  • [12] Chaves-O’Flynn G. D., Vanden-Eijnden E., Stein D. L., Kent A. D.,Energy barriers to magnetization reversal in perpendicularlymagnetized thin film nanomagnets, J. Appl. Phys., 2013, 113,023912.[Crossref][WoS]
  • [13] Ralph D. C., Stiles M. D., Spin transfer torques, J. Magn. Magn.Mater., 2008, 320, 1190–1216.
  • [14] Maruyama T., Shiota Y., Nozaki T., Ohta K., Toda N., MizuguchiM., Tulapurkar A. A., Shinjo T., Shiarishi M., Mizukami S., etal. Large voltage-induced magnetic anisotropy change in a fewatomic layers of iron, Nat. Nanotechnol., 2009, 4, 158–161.[Crossref]
  • [15] Parkin S. S. P., Hayashi M., Thomas L., Magnetic domain-wallracetrack memory, Science, 2008, 320, 190–194.
  • [16] van Dorp W. F., Hagen C. W., A critical literature review offocused electron beam induced deposition, J. Appl. Phys.,2008, 104, 081301.[Crossref][WoS]
  • [17] Utke I., Moshkalev S., Russel P., Nanofabrication using focusedion and electron beams: principles and applications; OxfordUniversity Press: New York, 2012.
  • [18] Huth M., Porrati F., Schwalb C., Winhold M., Sachser R., DukicM., Adams J., Fantner G., Focused electron beam induceddeposition: A perspective, Beilstein J. Nanotechnol., 2012, 3,597–619.[PubMed]
  • [19] van Dorp W. F., van Someren B., Hagen C. W., Kruit P., Crozier P.,Approaching the resolution limit of nanometer-scale electronbeam-induced deposition, Nano Lett., 2005, 5, 1303–7.[Crossref][PubMed]
  • [20] Lau Y. M., Chee P. C., Thong J. T. L., Ng V., Properties andapplications of cobalt-based material produced by electronbeam-induced deposition. J. Vac. Sci. Technol., A 2002, 20,1295.[Crossref]
  • [21] Fernández-Pacheco A., Serrano-Ramón L., Michalik J. M., IbarraM. R., De Teresa J. M., O’Brien L., Petit D., Lee J., Cowburn R.P., Three dimensional magnetic nanowires grown by focusedelectron-beam induced deposition, Sci. Rep., 2013, 3, 1492.[WoS]
  • [22] Serrano-Ramón L., Córdoba R., Rodríguez L. A., Magén C.,Snoeck E., Gatel C., Serrano I., Ibarra M. R., De Teresa J. M.,Ultrasmall functional ferromagnetic nanostructures grown byfocused electron-beam-induced deposition, ACS Nano, 2011, 5,7781–7787.[Crossref][WoS]
  • [23] Belova L. M., Dahlberg E. D., Riazanova A., Mulders J. J. L.,Christophersen C., Eckert J., Rapid electron beam assistedpatterning of pure cobalt at elevated temperatures via seededgrowth, Nanotechnology, 2011, 22, 145305.[Crossref][WoS]
  • [24] Boero G., Utke I., Bret T., Quack N., Todorova M., Mouaziz S.,Kejik P., Brugger J., Popovic R. S., Hoffmann P., Submicrometerhall devices fabricated by focused electron-beam-induceddeposition, Appl. Phys. Lett., 2005, 86, 042503.[Crossref]
  • [25] Utke I., Michler J., Gasser P., Santschi C., Laub D., Cantoni M.,Buffat, P. A., Jiao C., Hoffmann P., Cross section investigationsof compositions and sub-structures of tips obtained by focusedelectron beam induced deposition, Adv. Eng. Mater., 2005, 7,323–331.[Crossref]
  • [26] Serrano-Ramón L., Fernández-Pacheco A., Ibarra M. R., Petit D.,Cowburn R. P., Tyliszeczak T., De Teresa J. M., Modification ofdomain-wall propagation in Co nanowires via Ga+ irradiation,Eur. Phys. J. B, 2013, 86, 97.[Crossref][WoS]
  • [27] Allwood D. A., Xiong G., Cooke M. D., Cowburn R. P., MagnetoopticalKerr effect analysis of magnetic nanostructures, J. Phys.D Appl. Phys., 2003, 36, 2175–2182.[Crossref]
  • [28] Zeng H. T., Read D., O’Brien L., Sampaio J., Lewis E. R., PetitD., Cowburn R. P., Asymmetric magnetic NOT gate and shiftregisters for high density data storage, Appl. Phys. Lett., 2010,96, 262510.[Crossref]
  • [29] Schäfer R., Handbook of magnetism and advanced magneticmaterials. Vol. 3: Novel techniques for characterizing andreparing samples. Part 5.; Kronmüller H., Parkin S. S., Eds.;John Wiley & Sons, Ltd, Chichester, 2007.
  • [30] Idigoras O., Vavassori P., Porro J. M., Berger A., Kerr microscopystudy of magnetization reversal in uniaxial Co-films, J. Magn.Magn. Mater., 2010, 322, L57–L60.[WoS]
  • [31] Hartmann U., Magnetic force microscopy, Annu. Rev. Mater.Sci., 1999, 29, 53–87.[Crossref]
  • [32] Rave W., Hubert A., Magnetic Ground State of a Thin-FilmElement, IEEE Trans. Magn., 2000, 36, 3886.[Crossref]
  • [33] Hankemeier S., Frömter, R., Mikuszeit N., Stickler D., StrillrichH., Pütter S., Vedmedenko E. Y., Oepen, H. P., Magnetic GroundState of Single and Coupled Permalloy Rectagle, Phys. Rev.Lett. 2009, 103, 147204.[Crossref][WoS]
  • [34] Xie K., Zhang X., Lin W., Zhang P., Sang H., Phys. Rev. B, 2011,84,054460.
  • [35] Donolato M., Torti A., Kostesha N., Deryabina M., Sogne E.,Vavassori P., Hansen M. F., Bertacco R., Magnetic domainwall conduits for single cell applications, Lab Chip, 2011, 11,2976–83.[Crossref][WoS][PubMed]
  • [36] Vavassori P., Metlushko V., Ilic B., Gobbi M., Donolato M.,Cantoni M., Bertacco R., Domain wall displacement in Py square ring for single nanometric magnetic bead detection,Appl. Phys. Lett., 2008, 93, 203502.[Crossref]
  • [37] Nikulina E., Idigoras O., Porro J. M., Vavassori P., ChuvilinA., Berger A., Origin and control of magnetic exchangecoupling in between focused electron beam deposited cobaltnanostructures. Appl. Phys. Lett., 2013, 103, 123112.[Crossref]
  • [38] De Teresa J.M., Córdoba R., Arrays of Desenly Packed IsolatedNanowires by Focused Beam Induced Deposition Plus Ar+Milling, ACS Nano, 2014, 8, 3788-95. [Crossref][WoS]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.