PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2014 | 1 | 1 |
Article title

Nitrogen as a carrier gas for regime control in focused electron beam induced deposition

Content
Title variants
Languages of publication
EN
Abstracts
EN
This work reports on focused electron beam induced deposition (FEBID) using a custom built gas injection system (GIS) equipped with nitrogen as a gas carrier. We have deposited cobalt from Co2(CO)8, which is usually achieved by a heated GIS. In contrast to a heated GIS, our strategy allows avoiding problems caused by eventual temperature gradients along the GIS. Moreover, the use of the gas carrier enables a high control over process conditions and consequently the properties of the synthesized nanostructures. Chemical composition and growth rate are investigated by energy dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM), respectively. We demonstrate that the N2 flux is strongly affecting the deposit growth rate without the need of heating the precursor in order to increase its vapour pressure. Particularly, AFM volume estimation of the deposited structures showed that increasing the nitrogen resulted in an enhanced deposition rate. The wide range of achievable precursor fluxes allowed to clearly distinguish between precursor- and electron-limited regime. With the carrier-based GIS an optimized deposition procedure with regards to the desired deposition regime has been enabled
Publisher

Journal
Year
Volume
1
Issue
1
Physical description
Dates
published
1 - 1 - 2014
accepted
11 - 4 - 2014
received
12 - 3 - 2014
online
27 - 5 - 2014
Contributors
  • Institute of Solid State Electronics, Vienna University of Technology, Floragasse 7/1, A-1040 Vienna, Austria
  • Institute of Solid State Electronics, Vienna University of Technology, Floragasse 7/1, A-1040 Vienna, Austria
  • Institute of Solid State Electronics, Vienna University of Technology, Floragasse 7/1, A-1040 Vienna, Austria
  • Institute of Solid State Electronics, Vienna University of Technology, Floragasse 7/1, A-1040 Vienna, Austria
  • Institute of Solid State Electronics, Vienna University of Technology, Floragasse 7/1, A-1040 Vienna, Austria
References
  • [1] Niemier M., Bernstein G., Csaba G., Dingler A., Hu X., Kurtz S., Liu S., Nahas J., Porod W., Siddiq M., et al.,Nanomagnet logic: progress toward system-level integration, J Phys Condens Matter, 2011,23,493202.[WoS][Crossref][PubMed]
  • [2] Martin J., Nogues J., Liu K., Vicent J., Schuller I.K.,Ordered magnetic nanostructures: fabrication and properties, J Magn Magn Mater, 2003,256,449-501.
  • [3] Utke I., Hoffmann P., Melngailis J.,Gas-assisted focused electron beam and ion beam processing and fabrication, J Vac Sci Technol, B, 2008,26,1197-276.[Crossref]
  • [4] Hoffmann P., Utke I., Cicoira F., Dwir B., Leifer K., Kapon E., Doppelt P.,Focused Electron Beam Induced Deposition of Gold and Rhodium. MRS Proceedings, vol. 624, 2000, p. 171.
  • [5] Botman A., Mulders J., Hagen C.,Creating pure nanostructures from electron-beam-induced deposition using purification techniques: a technology perspective, Nanotechnology, 2009,20,372001.[PubMed][WoS][Crossref]
  • [6] Chappert C., Fert A., Van Dau F.N.,The emergence of spin electronics in data storage, Nat Mat, 2007,6,813-23.[Crossref]
  • [7] Allwood D.A., Xiong G., Faulkner C., Atkinson D., Petit D., Cowburn R.,Magnetic domain-wall logic, Science, 2005,309,1688-92.
  • [8] Serrano-Ramón L., Córdoba R., Rodríguez L.A., Magén C., Snoeck E., Gatel C., Serrano I., Ibarra M.R., De Teresa J.M.,Ultrasmall functional ferromagnetic nanostructures grown by focused electron-beam-induced deposition, ACS Nano, 2011,5,7781-7.[Crossref][PubMed][WoS]
  • [9] Gavagnin M., Wanzenboeck H.D., Belic D., Bertagnolli E.,Synthesis of Individually Tuned Nanomagnets for Nanomagnet Logic by Direct Write Focused Electron Beam Induced Deposition, ACS Nano, 2012,7,777-84.[PubMed][WoS]
  • [10] Van Dorp W., Hagen C.,A critical literature review of focused electron beam induced deposition, J Appl Phys, 2008,104,081301.[WoS]
  • [11] Huth M., Porrati F., Schwalb C., Winhold M., Sachser R., Dukic M., Adams J., Fantner G.,Focused electron beam induced deposition: A perspective, Beilstein J Nanotechnol , 2012,3,597-619.[PubMed]
  • [12] Friedli V., Utke I.,Optimized molecule supply from nozzle-based gas injection systems for focused electron-and ion-beam induced deposition and etching: simulation and experiment, J Phys D: Appl Phys, 2009,42,125305.[Crossref]
  • [13] Lau Y., Chee P., Thong J., Ng V.,Properties and applications of cobalt-based material produced by electron-beam-induced deposition, J Vac Sci Technol, A, 2002,20,1295-302.[Crossref]
  • [14] Gavagnin M., Wanzenboeck H.D., Belic D., Shawrav M.M., Persson A., Gunnarsson K., Svedlindh P., Bertagnolli E.,Magnetic force microscopy study of shape engineered FEBID iron nanostructures, Phys Status Solidi A, 2013.[WoS]
  • [15] Fowlkes J.D., Randolph S.J., Rack P.D.,Growth and simulation of high-aspect ratio nanopillars by primary and secondary electroninduced deposition, J Vac Sci Technol, B, 2005,23,2825-32.[Crossref]
  • [16] Nikulina E., Idigoras O., Porro J., Vavassori P., Chuvilin A., Berger A.,Origin and control of magnetic exchange coupling in between focused electron beam deposited cobalt nanostructures, Appl Phys Lett, 2013,103,123112.
  • [17] Hoyle P., Ogasawara M., Cleaver J., Ahmed H.,Electrical resistance of electron beam induced deposits from tungsten hexacarbonyl, Appl Phys Lett, 1993,62,3043-5.[Crossref]
  • [18] Wanzenboeck H., Roediger P., Hochleitner G., Bertagnolli E., Buehler W.,Novel method for cleaning a vacuum chamber from hydrocarbon contamination, J Vac Sci Technol, A, 2010,28,1413.[WoS][Crossref]
  • [19] Utke I., Bret T., Laub D., Buffat P., Scandella L., Hoffmann P.,Thermal effects during focused electron beam induced deposition of nanocomposite magnetic-cobalt-containing tips, Microelectron Eng, 2004,73,553-8.
  • [20] Córdoba R., Fernández-Pacheco R., Fernández-Pacheco A., Gloter A., Magén C., Stéphan O., Ibarra M.R., De Teresa J.M.,Nanoscale chemical and structural study of Co-based FEBID structures by STEM-EELS and HRTEM, Nanoscale Res Lett, 2011,6,1-6. [WoS]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_nanofab-2014-0002
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.