Preferences help
enabled [disable] Abstract
Number of results
2012 | 1 | 3-16
Article title

Narrowly Dispersed Molecularly Imprinted Polymer Microspheres with Photo- and Thermo-Responsive Template Binding Properties in Pure Aqueous Media by RAFT Polymerization

Title variants
Languages of publication
The facile and controlled synthesis of narrowly dispersed molecularly imprinted polymer (MIP) microspheres with both photo- and thermo-responsive template binding properties in pure aqueous media is described. Narrowly dispersed "living" core polymer microspheres with surface-immobilized dithioester groups were firstly prepared via reversible addition-fragmentation chain transfer (RAFT) precipitation polymerization (RAFTPP). The polymer microspheres were then successively grafted with an azobenzene (azo)-containing MIP layer and thermo-responsive poly(N-isopropylacrylamide) (PNIPAAm) brushes via surface-initiated RAFT polymerization to provide the desired product. The successful grafting of the azo-containing MIP layer and PNIPAAm brushes was confirmed by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), and static contact angle experiments. The attachment of an azo-containing MIP layer onto the "living" core polymer beads with a narrow size distribution allows the direct generation of narrowly dispersed photoresponsive core-shell MIP microspheres. Moreover, the introduction of PNIPAAm brushes onto the core-shell MIP microspheres has been shown to significantly improve their surface hydrophilicity leading to pure water-compatibility. Additionally, this modification confers thermo-responsive template binding properties upon the microspheres.
Physical description
1 - 1 - 2012
13 - 6 - 2012
19 - 4 - 2012
2 - 7 - 2012
  • Puoci F., Iemma F., Picci N., Stimuli-responsive molecularly imprinted polymers for drug delivery: A review, Curr. Drug Deliv., 2008, 5, 85-96.
  • Oya T., Enoki T., Grosberg A. Yu., Masamune S., Sakiyama T., Takeoka Y., Tanaka K., Wang G., Yilmaz Y., Feld M. S., Dasari R., Tanaka T., Reversible molecular adsorption based on multiple-point interaction by shrinkable gels, Science, 1999, 286, 1543-1545.
  • Kanekiyo Y., Naganawa R., Tao H., pH-responsive molecularly imprinted polymers, Angew. Chem. Int. Ed., 2003, 42, 3014-3016.
  • Gong C., Lam M. H. W., Yu H., The fabrication of a photoresponsive molecularly imprinted polymer for the photoregulated uptake and release of caffeine, Adv. Funct. Mater., 2006, 16, 1759-1767.[Crossref]
  • Chen Z., Xu L., Liang Y., Zhao M., pH-sensitive water-soluble nanospheric imprinted hydrogels prepared as horseradish peroxidase mimetic enzymes, Adv. Mater., 2010, 22, 1488-1492.[PubMed][Crossref][WoS]
  • Minoura N., Idei K., Rachkov A., Uzawa H., Matsuda K., Molecularly imprinted polymer membranes with photoregulated template binding, Chem. Mater., 2003, 15, 4703-4704.
  • Minoura N., Idei K., Rachkov A., Choi Y., Ogiso M., Matsuda K., Preparation of azobenzene-containing polymer membranes that function in photoregulated molecular recognition, Macromolecules, 2004, 37, 9571-9576.
  • Gomy C., Schmitzer R., Synthesis and photoresponsive properties of a molecularly imprinted polymer, Org. Lett., 2007, 9, 3865-3868.[Crossref][PubMed]
  • Takeuchi T., Akeda K., Murakami S., Shinmori H., Inoue S., Lee W., Hishiya T., Photoresponsive porphyrin-imprinted polymers prepared using a novel functional monomer having diaminopyridine and azobenzene moieties, Org. Biomol. Chem., 2007, 5, 2368-2374.[WoS]
  • Gong C., Wong K. L., Lam M. H. W., Photoresponsive molecularly imprinted hydrogels for the photoregulated release and uptake of pharmaceuticals in the aqueous media, Chem. Mater., 2008, 20, 1353-1358.[Crossref][WoS]
  • Fang L., Chen S., Zhang Y., Zhang H., Azobenzene-containing molecularly imprinted polymer microspheres with photoresponsive template binding properties, J. Mater. Chem., 2011, 21, 2320-2329.[WoS][Crossref]
  • Puoci F., Iemma F., Muzzalupo R., Spizzirri U. G., Trombio S., Cassano R., Picci N., Spherical molecularly imprinted polymers (SMIPs) via a novel precipitation polymerization in the controlled delivery of sulfasalazine, Macromol. Biosci., 2004, 4, 22-26.[Crossref]
  • Yoshimatsu K., Reimhult K., Krozer A., Mosbach K., Sode K., Ye L., Uniform molecularly imprinted microspheres and nanoparticles prepared by precipitation polymerization: The control of particle size suitable for different analytical applications, Anal. Chim. Acta, 2007, 584, 112-121.[WoS]
  • Demirel G., özçetin G., Turan E., çaykara T., pH/temperature-sensitive imprinted ionic poly(N-tert-butylacrylamide-co-acrylamide/maleic acid) hydrogels for bovine serum albumin, Macromol. Biosci., 2005, 5, 1032-1037.[Crossref][PubMed]
  • Hua Z., Chen Z., Li Y., Zhao M., Thermosensitive and salt-sensitive molecularly imprinted hydrogel for bovine serum albumin, Langmuir, 2008, 24, 5773-5780.[WoS]
  • Stuart M. A. C., Huck W. T. S., Genzer J., Müller M., Ober C., Stamm M., Sukhorukov G. B., Szleifer I., Tsukruk V. V., Urban M., Winnik F., Zauscher S., Luzinov I., Minko S., Emerging applications of stimuli-responsive polymer materials, Nat. Mater., 2010, 9, 101-113.[WoS][PubMed][Crossref]
  • Le T. P., Moad G., Rizzardo E., Thang S. H., PCT Int. Appl. WO 98/01478; Chem. Abstr. 1998, 128, 115390.
  • Li X., Wen R., Zhang Y., Zhu L., Zhang B., Zhang H., Photoresponsive side-chain liquid crystalline polymers with an easily cross-linkable azobenzene mesogen, J. Mater. Chem., 2009, 19, 236-245.
  • Schweitz L., Spégel P., Nilsson S., Molecularly imprinted microparticles for capillary electrochromatographic enantiomer separation of propranolol, Analyst, 2000, 125, 1899-1901.
  • Rowe M. D., Hammer B. A. G., Boyes S. G., Synthesis of surface-initiated stimuli-responsive diblock copolymer brushes utilizing a combination of ATRP and RAFT polymerization, Macromolecules, 2008, 41, 4147-4157.
  • Jiang J., Zhang Y., Guo X., Zhang H., Narrow or monodisperse, highly crosslinked, and "living" polymer microspheres by atom transfer radical precipitation polymerization, Macromolecules, 2011, 44, 5893-5904.[WoS]
  • Hishiya T., Shibata M., Kakazu M., Asanuma H., Komiyama M., Molecularly imprinted cyclodextrins as selective receptors for steroids, Macromolecules, 1999, 32, 2265-2269.
  • Pan G., Zhang Y., Ma Y., Li C., Zhang H., Efficient one-pot synthesis of water-compatible molecularly imprinted polymer microspheres by facile RAFT precipitation polymerization, Angew. Chem. Int. Ed., 2011, 50, 11731-11734.[WoS]
  • Pan G., Zu B., Guo X., Zhang Y., Li C., Zhang H., Preparation of molecularly imprinted polymer microspheres via reversible addition-fragmentation chain transfer precipitation polymerization, Polymer, 2009, 50, 2819-2825.
  • Bontempo D., Tirelli N., Feldman K., Masci G., Crescenzi V., Hubbell J. A., Atom transfer radical polymerization as a tool for surface functionalization, Adv. Mater., 2002, 14, 1239-1241.[Crossref]
  • Pan G., Zhang Y., Guo X., Li C., Zhang H., An efficient approach to obtaining water-compatible and stimuli-responsive molecularly imprinted polymers by the facile surface-grafting of functional polymer brushes via RAFT polymerization, Biosens. Bioelectron., 2010, 26, 976-982.[PubMed][WoS][Crossref]
  • Pan G., Ma Y., Zhang Y., Guo X., Li C., Zhang H., Controlled synthesis of water-compatible molecularly imprinted polymer microspheres with ultrathin hydrophilic polymer shells via surface-initiated reversible addition-fragmentation chain transfer polymerization, Soft Matter, 2011, 7, 8428-8439.
  • Dirion B., Cobb Z., Schillinger E., Andersson L. I., Sellergren B., Water-compatible molecularly imprinted polymers obtained via high-throughput synthesis and experimental design, J. Am. Chem. Soc., 2003, 125, 15101-15109.
  • Boonpangrak S., Whitcombe M. J., Prachayasittikul V., Mosbach K., Ye L., Preparation of molecularly imprinted polymers using nitroxide-mediated living radical polymerization, Biosens. Bioelectron., 2006, 22, 349-354.[Crossref][PubMed]
  • Wang Y., Xu H., Zhang X., Tuning the amphiphilicity of building blocks: Controlled self-assembly and disassembly for functional supramolecular materials, Adv. Mater., 2009, 21, 2849-2864.[Crossref][WoS]
  • Schild H. G., Poly(N-isopropylacrylamide): Experiment, theory and application, Prog. Polym. Sci., 1992, 17, 163-249.[Crossref]
  • Stayton P. S., Shimoboji T., Long C., Chilkoti A., Chen G., Harris J. M., Hoffman A. S., Control of protein-ligand recognition using a stimuli-responsive polymer, Nature, 1995, 378, 472-474.
  • Xu S., Li J., Chen L., Molecularly imprinted polymers by reversible addition-fragmentation chain transfer precipitation polymerization for preconcentration of atrazine in food matrices, Talanta, 2011, 85, 282-289.[WoS]
  • Chen L., Xu S., Li J., Recent advances in molecular imprinting technology: current status, challenges and highlighted applications, Chem. Soc. Rev., 2011, 40, 2922-2942.[WoS]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.