Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2013 | 1 | 1 |

Article title

What is the role of cyclic di-GMP signaling within the human gut microbiome?


Title variants

Languages of publication



There is currently little understanding of the
role of the bacterial second messenger cyclic di-GMP
(c-di-GMP) in the human gut microbiome. C-di-GMP is
synthesized by highly conserved diguanylate cyclase
(DGC) enzymes and degraded by highly conserved
phosphodiesterase (PDE) enzymes. To begin to assess the
prevalence of c-di-GMP signaling in the gut microbiome,
we found on average 1.0 DGC and 0.8 PDE enzymes per
million base pairs of metagenomic DNA derived from stool
samples. Specific species encoding substantial numbers
of GGDEF and EAL domains were the commensal species Faecalibacterium prausnitzii, Eubacterium rectale, and Mitsuokella multacida. The species Bilophila wadsworthia and Klebsiella oxytoca were identified as gut microbiome
members that encode higher numbers of GGDEFs and
EALs and are associated with gut dysbiosis and infection.
Consistent with this result, genome analysis of several
enteric pathogens revealed significantly higher numbers
of GGDEFs and EALs per million base pairs compared to
the gut microbiome. Our analysis indicates that c-di-GMP
signaling is present but minimal in the gut microbiome,
and we speculate that the numbers of GGDEFs and EALs
in a given genome from a member of the gut microbiome
positively correlates with pathogenic potential.







Physical description


12 - 8 - 2014
19 - 6 - 2014
6 - 6 - 2014


  • Department of Microbiology
    and Molecular Genetics
  • Department of Microbiology
    and Molecular Genetics
  • Michigan State
    University, East Lansing, Michigan, USA, 48824


  • [1] Ross P., Weinhouse H., Aloni Y., Michaeli D., Weinberger-Ohana P.,Mayer R., et al., Regulation of cellulose synthesis in Acetobacterxylinum by cyclic diguanylic acid. Nature, 1987, 325, 279 – 281
  • [2] Hengge R., Principles of c-di-GMP signalling in bacteria, Nat.Rev. Microbiol., 2009, 7, 263–73[PubMed][Crossref]
  • [3] Sudarsan N., Lee ER., Weinberg Z., Moy R.H., Kim J.N., LinkK.H., et al., Riboswitches in eubacteria sense the secondmessenger cyclic di-GMP, Science., 2008, 321, 411–413
  • [4] Aldridge P., Paul R., Goymer P., Rainey P., Jenal U., Role of theGGDEF regulator PleD in polar development of Caulobactercrescentus, Mol. Microbiol., 2003, 47, 1695–1708
  • [5] Hobley L., Fung R.K.Y., Lambert C., Harris M.A.T.S., Dabhi J.M.,King S.S., et al., Discrete cyclic di-GMP-dependent controlof bacterial predation versus axenic growth in Bdellovibriobacteriovorus, PLoS Pathog. 2012, 8, e1002493[Crossref]
  • [6] Ryjenkov D.A., Tarutina M., Moskvin O.V., Gomelsky M., CyclicDiguanylate Is a Ubiquitous Signaling Molecule in Bacteria :Insights into Biochemistry of the GGDEF Protein Domain, J.Bacteriol., 2005, 187, 1792–1798
  • [7] Tal R., Wong H., Calhoon R., Three cdg operons controlcellular turnover of cyclic di-GMP in Acetobacter xylinum:genetic organization and occurrence of conserved domains inisoenzymes. J. Bacteriol., 1998, 180, 4416–4425
  • [8] Seshasayee A.S.N., Fraser G.M., Luscombe N.M.,Comparative genomics of cyclic-di-GMP signalling in bacteria:post-translational regulation and catalytic activity, NucleicAcids Res., 2010, 38, 5970–5981[Crossref][PubMed]
  • [9] Römling U., Galperin M.Y., Gomelsky M., Cyclic di-GMP: the first25 years of a universal bacterial second messenger, Microbiol.Mol. Biol. Rev., 2013, 77, 1–52
  • [10] Alam M., Sultana M., Nair G.B., Siddique K.A., Hasan N.A., SackR.B., Viable but nonculturable Vibrio cholerae O1 in biofilms inthe aquatic environment and their role in cholera transmission,Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 17801–17806
  • [11] Turnbaugh P., Ley R., Hamady M., The human microbiomeproject: exploring the microbial part of ourselves in a changingworld, Nature, 2007, 449, 804–810
  • [12] Turnbaugh P.J., Ley R.E., Mahowald M.A., Magrini V., MardisE.R., Gordon J.I., An obesity-associated gut microbiome withincreased capacity for energy harvest, Nature, 2006, 444,1027–1031
  • [13] Hooper L.V., Midtvedt T., Gordon J.I., How host-microbialinteractions shape the nutrient environment of the mammalianintestine, Annu. Rev. Nutr., 2002, 22, 283–307[Crossref][PubMed]
  • [14] Stecher B., Hardt W-D., The role of microbiota in infectiousdisease, Trends Microbiol., 2008, 16, 107–114[PubMed][Crossref]
  • [15] Medellin-Peña M.J., Wang H., Johnson R., Anand S., GriffithsM.W., Probiotics affect virulence-related gene expression inEscherichia coli O157:H7, Appl. Environ. Microbiol., 2007, 73,4259–4267
  • [16] Eckburg P., Bik E., Bernstein C., Diversity of the HumanIntestinal Microbial Flora, Science, 2005, 308, 1635–1638
  • [17] Kurokawa K., Itoh T., Kuwahara T., Oshima K., Toh H., Toyoda A.,et al., Comparative metagenomics revealed commonly enrichedgene sets in human gut microbiomes, DNA Res., 2007, 14,169–181[PubMed][Crossref]
  • [18] Ferrer M., Ruiz A., Lanza F., Haange S-B., Oberbach A., TillH., et al., Microbiota from the distal guts of lean and obeseadolescents exhibit partial functional redundancy besides cleardifferences in community structure, Environ. Microbiol. 2013,15, 211–226[Crossref]
  • [19] Turnbaugh P.J., Quince C., Faith J.J., McHardy A.C., YatsunenkoT., Niazi F., et al., Organismal, genetic, and transcriptionalvariation in the deeply sequenced gut microbiomes of identicaltwins, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 7503–7508
  • [20] De N., Pirruccello M., Krasteva P.V., Bae N., Raghavan R.V.,Sondermann H., Phosphorylation-independent regulation ofthe diguanylate cyclase WspR, PLoS Biol., 2008, 6, e67[Crossref]
  • [21] Rao F., Yang Y., Qi Y., Liang Z-X., Catalytic Mechanism of CyclicDi-GMP-Specific Phosphodiesterase: a Study of the EALDomain-Containing RocR from Pseudomonas aeruginosa, J.Bacteriol., 2008, 190, 3622–3631
  • [22] Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., ZhangZ., Miller W., et al., Gapped BLAST and PSI-BLAST: a newgeneration of protein database search programs, Nucleic AcidsRes., 1997, 25, 3389–3402[Crossref]
  • [23] Marchesi J., Prokaryotic and Eukaryotic Diversity of the HumanGut, Adv. Appl. Microbiol., 2010, 72, 43–62[Crossref]
  • [24] Rajilić-Stojanović M., Smidt H., de Vos W.M., Diversity of thehuman gastrointestinal tract microbiota revisited, Environ.Microbiol., 2007, 9, 2125–2136[Crossref]
  • [25] Sokol H., Pigneur B., Watterlot L., Lakhdari O., Bermúdez-Humarán L.G., Gratadoux J-J., et al., Faecalibacteriumprausnitzii is an anti-inflammatory commensal bacteriumidentified by gut microbiota analysis of Crohn disease patients,Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 16731–16736[Crossref]
  • [26] Sokol H., Seksik P., Furet J.P., Firmesse O., Nion-Larmurier I.,Beaugerie L., et al., Low counts of Faecalibacterium prausnitziiin colitis microbiota, Inflamm. Bowel Dis., 2009, 15, 1183–1189[Crossref]
  • [27] Baron E.J., Summanen P., Downes J., Roberts M.C., WexlerH., Finegold S.M., Bilophila wadsworthia, gen. nov. and sp.nov., a Unique Gram-negative Anaerobic Rod Recovered fromAppendicitis Specimens and Human Faeces, J. Gen. Microbiol.,1989, 135, 3405–3411
  • [28] Baron E.J., Bilophila wadsworthia: a unique Gram-negativeanaerobic rod, Anaerobe, 1997, 3, 83–86[Crossref]
  • [29] Gorkiewicz G., Nosocomial and antibiotic-associated diarrhoeacaused by organisms other than Clostridium difficile, Int. J.Antimicrob. Agents, 2009, 1, S37–S41
  • [30] Mondot S., Kang S., Furet J.P., Aguirre de Carcer D., McSweeneyC., Morrison M., et al., Highlighting new phylogeneticspecificities of Crohn’s disease microbiota, Inflamm. BowelDis., 2011, 17, 185–192[PubMed][Crossref]
  • [31] Kang S., Denman S.E., Morrison M., Yu Z., Dore J., Leclerc M., etal., Dysbiosis of fecal microbiota in Crohn’s disease patients asrevealed by a custom phylogenetic microarray, Inflamm. BowelDis., 2010, 16, 2034–2042[Crossref][PubMed]
  • [32] Purcell E.B., McKee R.W., McBride S.M., Waters C.M., Tamayo R.,Cyclic diguanylate inversely regulates motility and aggregationin Clostridium difficile, J. Bacteriol., 2012, 194, 3307–3316
  • [33] Tischler A.D., Camilli A., Cyclic diguanylate (c-di-GMP)regulates Vibrio cholerae biofilm formation, Mol. Microbiol.,2004, 53, 857–869[Crossref][PubMed]
  • [34] Tamayo R., Tischler A.D., Camilli A., The EAL domain proteinVieA is a cyclic diguanylate phosphodiesterase, J. Biol. Chem.,2005, 280, 33324–33330
  • [35] Sommerfeldt N., Possling A., Becker G., Pesavento C., TschowriN., Hengge R., Gene expression patterns and differential inputinto curli fimbriae regulation of all GGDEF/EAL domain proteinsin Escherichia coli, Microbiology, 2009, 155, 1318–1331
  • [36] Hu J., Wang B., Fang X., Means W., McCormick R., Gornelsky M.,et al., C-di-GMP signaling regulates E. coli O157:H7 adhesion tocolonic epithelium, Vet. Microbiol., 2013, 164, 344–351
  • [37] Galperin M., Bacterial signal transduction network in agenomic perspective, Environ. Microbiol., 2004 6, 552–567[Crossref]
  • [38] McKee R.W., Mangalea M.R., Purcell E.B., Borchardt E.K.,Tamayo R., The second messenger cyclic Di-GMP regulatesClostridium difficile toxin production by controlling expressionof sigD, J. Bacteriol., 2013, 195, 5174–5185
  • [39] Antoniani D., Rossi E., Rinaldo S., Bocci P., Lolicato M.,Paiardini A., et al., The immunosuppressive drug azathioprineinhibits biosynthesis of the bacterial signal molecule cyclicdi-GMP by interfering with intracellular nucleotide poolavailability, Appl. Microbiol. Biotechnol., 2013, 97, 7325–7336
  • [40] Sambanthamoorthy K., Luo C., Pattabiraman N., Feng X.,Koestler B., Waters C.M., et al., Identification of smallmolecules inhibiting diguanylate cyclases to control bacterialbiofilm development, Biofouling, 2014, 30, 17–28[Crossref]
  • [41] Sambanthamoorthy K., Sloup R.E., Parashar V., Smith J.M., KimE.E., Semmelhack M.F., et al., Identification of small moleculesthat antagonize diguanylate cyclase enzymes to inhibitbiofilm formation. Antimicrob. Agents Chemother., 2012, 56,5202–5211.
  • [42] Galperin M., Higdon R., Kolker E., Interplay of heritage andhabitat in the distribution of bacterial signal transductionsystems, Mol. Biosyst., 2010, 6, 721–728[Crossref]
  • [43] Burdette D.L., Monroe K.M., Sotelo-Troha K., Iwig J.S., EckertB., Hyodo M., Hayakawa Y., Vance R.E., STING is a direct innateimmune sensor of cyclic di-GMP. Nature. 2011, 478, 515-518.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.