Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 1 | 1 |

Article title

Invertebrate systems for hypothesis-driven microbiome
research

Content

Title variants

Languages of publication

EN

Abstracts

EN
A number of novel, invertebrate systems have emerged as excellent
models for the study of microbiomes. Due to their small size, evolutionary
diversity, ease of culture, and – in many cases – relatively simple gut
communities, invertebrates of many different orders can be tools to drive
hypothesis-driven microbiome research. In this review we highlight several
host systems amenable to microbiota analyses and specific questions
that can be easily addressed in those systems. These questions address
functional equivalence across similar habitats, host-specificity and
coevolution of host-microbe interactions, and acquisition and transmission
dynamics of host-associated communities. We propose that host systems
be chosen based on the question of interest, and that insect systems are
excellent tools for the vast behavioral, ecological, and genetic diversity that
allows them to address a variety of these questions.

Keywords

Publisher

Year

Volume

1

Issue

1

Physical description

Dates

accepted
11 - 3 - 2013
received
23 - 12 - 2012
online
24 - 4 - 2013

Contributors

  • Department of Biology,
    Indiana University,
    1001 E 3rd Street, Bloomington,
    IN 47405, USA
  • Department of Biology,
    Indiana University,
    1001 E 3rd Street, Bloomington,
    IN 47405, USA
  • Department of Biology,
    Indiana University,
    1001 E 3rd Street, Bloomington,
    IN 47405, USA
  • Department of Biology,
    Indiana University,
    1001 E 3rd Street, Bloomington,
    IN 47405, USA
  • Department of Biology,
    Indiana University,
    1001 E 3rd Street, Bloomington,
    IN 47405, USA

References

  • Pace NR, Olsen GJ, Woese CR, Ribosomal RNA phylogenyand the primary lines of evolutionary descent. Cell. 1986.45(3):325-326.[PubMed][Crossref]
  • Wooley JC, Godzik A, Friedberg I, A primer on metagenomics.PLoS Comput Biol. 2010. 6(2): e1000667.[Crossref]
  • Simon C Daniel R, Metagenomic analyses: past and futuretrends. Appl Environ Microbiol. 2011. 77(4):1153-1161.[PubMed][Crossref]
  • Schloss PD, Westcott SL, Assessing and improving methodsused in operational taxonomic unit-based approaches for16S rRNA gene sequence analysis. Appl Environ Microbiol.2011. 77(10):3219-3226.
  • Su C, et al., Culture-independent methods for studyingenvironmental microorganisms: methods, application, andperspective. Appl Microbiol Biotechnol. 2012. 93(3):993-1003.[Crossref][PubMed]
  • Tyson GW, et al., Community structure and metabolismthrough reconstruction of microbial genomes from theenvironment. Nature. 2004. 428(6978):37-43.
  • Chapelle FH, et al., A hydrogen-based subsurface microbialcommunity dominated by methanogens. Nature. 2002.415(6869):312-315.
  • Nealson KH, Venter JC, Metagenomics and the global oceansurvey: what’s in it for us, and why should we care? ISME J.2007. 1(3):185-187.[Crossref]
  • Gilbert JA, et al., Meeting report: the terabase metagenomicsworkshop and the vision of an Earth microbiome project.Stand Genomic Sci. 2010. 3(3):243-248.[Crossref]
  • Gilbert JA, et al., The Earth Microbiome Project: Meetingreport of the “1 EMP meeting on sample selection andacquisition” at Argonne National Laboratory October 6 2010.Stand Genomic Sci. 2010. 3(3):249-253.
  • Rosenberg E, Sharon G, and Zilber-Rosenberg I, Thehologenome theory of evolution contains Lamarckianaspects within a Darwinian framework. Environ Microbiol.2009. 11(12):2959-2962.[Crossref]
  • Zilber-Rosenberg I, Rosenberg E, Role of microorganismsin the evolution of animals and plants: the hologenometheory of evolution. FEMS Microbiol Rev. 2008. 32(5):723-735.[Crossref]
  • Turnbaugh PJ, et al., The human microbiome project. Nature.2007. 449(7164):804-810.
  • Huse SM, et al., Ironing out the wrinkles in the rare biospherethrough improved OTU clustering. Environ Microbiol. 2010.12(7):1889-1898.[PubMed][Crossref]
  • Sogin ML, et al., Microbial diversity in the deep sea and theunderexplored “rare biosphere”. Proc Natl Acad Sci USA.2006. 103(32):12115-12120.[Crossref]
  • Turnbaugh PJ, et al., A core gut microbiome in obese andlean twins. Nature. 2009. 457(7228):480-484.
  • Hamady M, Knight R, Microbial community profiling forhuman microbiome projects: Tools, techniques, andchallenges. Genome Res. 2009. 19(7):1141-1152.[Crossref][PubMed]
  • Caporaso JG, et al., Moving pictures of the humanmicrobiome. Genome Biol. 2011. 12(5):R50.[Crossref]
  • Ley RE, Knight R, Gordon JI, The human microbiome:eliminating the biomedical/environmental dichotomy inmicrobial ecology. Environ Microbiol. 2007. 9(1):3-4.[PubMed][Crossref]
  • Turnbaugh PJ, et al., The effect of diet on the humangut microbiome: a metagenomic analysis in humanizedgnotobiotic mice. Sci Transl Med. 2009. 1(6):6ra14.[Crossref]
  • Consortium THMP, Structure, function and diversity of thehealthy human microbiome. Nature. 2012. 486(7402):207-214.
  • Douglas AE, Nutritional interactions in insect-microbialsymbioses: aphids and their symbiotic bacteria Buchnera.Annu Rev Entomol. 1998. 43:17-37.[PubMed][Crossref]
  • Akman Gunduz E, Douglas AE, Symbiotic bacteria enableinsect to use a nutritionally inadequate diet. Proc Biol Sci.2009. 276(1658):987-991.
  • Baumann P, Biology bacteriocyte-associated endosymbiontsof plant sap-sucking insects. Annu Rev Microbiol. 2005.59:155-189.[Crossref][PubMed]
  • Liu S, et al., Deep sequencing of the transcriptomes ofsoybean aphid and associated endosymbionts. PLoS One.2012. 7(9):e45161.[Crossref]
  • Liu N, et al., Microbiome of fungus-growing termites: a newreservoir for lignocellulase genes. Appl Environ Microbiol.2011. 77(1):48-56.[PubMed][Crossref]
  • Warnecke F, et al., Metagenomic and functional analysis ofhindgut microbiota of a wood-feeding higher termite. Nature.2007. 450(7169):560-565.
  • Suen G, et al., An insect herbivore microbiome with highplant biomass-degrading capacity. PLoS Genetics. 2010.6(9):e1001129.[Crossref]
  • Watanabe H, Tokuda G, Cellulolytic systems in insects. AnnuRev Entomol. 2010. 55:609-632.[PubMed][Crossref]
  • Himmel ME, et al., Biomass recalcitrance: engineeringplants and enzymes for biofuels production. Science. 2007.315(5813):804-807.
  • Rubin EM, Genomics of cellulosic biofuels. Nature. 2008.454(7206):841-845.
  • Morrison M, et al., Plant biomass degradation by gutmicrobiomes: more of the same or something new? CurrOpin Biotechnol. 2009. 20(3):358-363.[PubMed][Crossref]
  • Kim M, Morrison M, Yu ZT, Status of the phylogeneticdiversity census of ruminal microbiomes. FEMS MicrobiologyEcol. 2011. 76(1):49-63.[Crossref]
  • Pope PB, et al., Metagenomics of the Svalbard reindeerrumen microbiome reveals abundance of polysaccharideutilization loci. PLoS One. 2012. 7(6):e38571.[Crossref]
  • Qi M, et al., Snapshot of the eukaryotic gene expression inmuskoxen rumen--a metatranscriptomic approach. PLoSOne. 2011. 6(5):e20521.[Crossref]
  • Wright AD, Northwood KS, Obispo NE, Rumen-likemethanogens identified from the crop of the folivorous SouthAmerican bird, the hoatzin (Opisthocomus hoazin). ISME J.2009. 3(10):1120-1126.[Crossref][PubMed]
  • Zhu LF, et al., Evidence of cellulose metabolism by the giantpanda gut microbiome. Proc Natl Acad Sci USA. 2011.108(43):17714-17719.[Crossref]
  • Godoy-Vitorino F, et al., Comparative analyses of foregut andhindgut bacterial communities in hoatzins and cows. ISME J.2012. 6(3):531-41.[Crossref]
  • Brulc JM, et al., Cellulosomics, a Gene-Centric Approachto Investigating the Intraspecific Diversity and Adaptation ofRuminococcus flavefaciens within the Rumen. PLoS One.2011. 6(10):e25329.[Crossref]
  • de Menezes AB, et al., Microbiome analysis of dairy cowsfed pasture or total mixed ration diets. FEMS Microbiol Ecol.2011. 78(2):256-265.[PubMed]
  • Pitta DW, et al., Rumen bacterial diversity dynamicsassociated with changing from bermudagrass hay to grazedwinter wheat diets. Microb Ecol. 2010. 59(3):511-522.[Crossref][PubMed]
  • Duan CJ, et al., Isolation and partial characterization of novelgenes encoding acidic cellulases from metagenomes ofbuffalo rumens. J Appl Microbiol. 2009. 107(1):245-256.[Crossref][PubMed]
  • Abril A, Bucher E, Evidence that the fungus cultured by leaf-cuttingants does not metabolize cellulose. Ecol Letts. 2002. 5:325-328.[Crossref]
  • Poulsen M, Currie CR, Symbiont interactions in a tripartitemutualism: exploring the presence and impact of antagonismbetween two fungus-growing ant mutualists. PLoS One.2010. 5(1):e8748.[Crossref]
  • Cafaro MJ, et al., Specificity in the symbiotic associationbetween fungus-growing ants and protective Pseudonocardiabacteria. Proc Biol Sci. 2011. 278(1713):1814-1822.
  • Currie, CR, et al., Coevolved crypts and exocrine glandssupport mutualistic bacteria in fungus-growing ants. Science.2006. 311(5757):81-83.
  • Gerardo, NM, Mueller UG, Currie CR, Complex hostpathogencoevolution in the Apterostigma fungus-growingant-microbe symbiosis. BMC Evol Biol. 2006. 6:88.[Crossref]
  • Gerardo, NM, et al., Exploiting a mutualism: parasitespecialization on cultivars within the fungus-growing antsymbiosis. Proc Biol Sci. 2004. 271(1550):1791-1798.
  • Visser, AA, et al., Exploring the potential for actinobacteriaas defensive symbionts in fungus-growing termites. MicrobEcol. 2012. 63(4):975-985.[PubMed][Crossref]
  • Aylward, FO, et al., Metagenomic and metaproteomicinsights into bacterial communities in leaf-cutter ant fungusgardens. ISME J. 2012. 6(9):1688-1701.[PubMed][Crossref]
  • Brulc, JM, et al., Gene-centric metagenomics of the fiberadherentbovine rumen microbiome reveals forage specificglycoside hydrolases. Proc Natl Acad Sci USA. 2009.106(6):1948-1953.[Crossref]
  • Todaka, N, et al., Phylogenetic analysis of cellulolytic enzymegenes from representative lineages of termites and a relatedcockroach. PLoS One. 2010. 5(1):e8636.[Crossref]
  • Xie, L, et al., Profiling the metatranscriptome of the protistancommunity in Coptotermes formosanus with emphasis onthe lignocellulolytic system. Genomics. 2012. 99(4):246-255.[PubMed][Crossref]
  • Ley, RE, et al., Evolution of mammals and their gut microbes.Science. 2008. 320(5883):1647-1651.
  • Ochman, H, et al., Evolutionary relationships of wild hominidsrecapitulated by gut microbial communities. PLoS Biol. 2010.8(11):e1000546.[Crossref]
  • Yildirim, S, et al., Characterization of the fecal microbiomefrom non-human wild primates reveals species specificmicrobial communities. PLoS One. 2010. 5(11):e13963.[Crossref]
  • Muegge, BD, et al., Diet drives convergence in gutmicrobiome functions across mammalian phylogeny andwithin humans. Science. 2011. 332(6032):970-974.
  • Hehemann, JH, et al., Transfer of carbohydrate-activeenzymes from marine bacteria to Japanese gut microbiota.Nature. 2010. 464(7290):908-912.
  • Hehemann, JH, et al., Bacteria of the human gut microbiomecatabolize red seaweed glycans with carbohydrate-activeenzyme updates from extrinsic microbes. Proc Natl Acad SciUSA. 2012. 109(48):19786-19791.[Crossref]
  • Russell, JA, et al., Bacterial gut symbionts are tightly linkedwith the evolution of herbivory in ants. Proc Natl Acad SciUSA. 2009. 106(50):21236-21241.[Crossref]
  • Kautz, S, et al., Surveying the microbiome of ants:Comparing 454 pyrosequencing with traditional methodsto uncover bacterial diversity. Appl Environ Microbiol. 2013Jan;79(2):525-34.[Crossref]
  • Ley, RE, Peterson DA, Gordon JI, Ecological and evolutionaryforces shaping microbial diversity in the human intestine. Cell.2006. 124(4):837-48.[Crossref][PubMed]
  • Fan, L, et al., Functional equivalence and evolutionaryconvergence in complex communities of microbial spongesymbionts. Proc Natl Acad Sci USA. 2012. 109(27):E1878-1887.[Crossref]
  • Schmitt, S, et al., Assessing the complex sponge microbiota:core, variable and species-specific bacterial communities inmarine sponges. ISME J. 2012. 6(3):564-576.[Crossref][PubMed]
  • Vaishampayan, PA, et al., Comparative metagenomics andpopulation dynamics of the gut microbiota in mother andinfant. Genome Biol Evol. 2010. 2:53-66.[Crossref]
  • Gronlund, MM, et al., Influence of mother’s intestinalmicrobiota on gut colonization in the infant. Gut Microb.2011. 2(4):227-233.[Crossref]
  • Palmer, C, et al., Development of the human infant intestinalmicrobiota. PLoS Biol. 2007. 5(7):e177.[Crossref]
  • Yatsunenko, T, et al., Human gut microbiome viewed acrossage and geography. Nature. 2012. 486(7402):222-227.
  • Werren, JH, Loehlin DW, The parasitoid wasp Nasonia: anemerging model system with haploid male genetics. ColdSpring Harb Protoc. 2009. 2009(10):pdb emo134.
  • Brucker RM, Bordenstein SR, The Roles of Host EvolutionaryRelationships (Genus: Nasonia) and Development inStructuring Microbial Communities. Evolution. 2012.66(2):349-362.[Crossref]
  • Werren JH, Zhang W, Guo LR, Evolution and phylogeny ofWolbachia: reproductive parasites of arthropods. Proc BiolSci. 1995. 261(1360):55-63.
  • McFrederick, QS, et al., Environment or kin: whence do beesobtain acidophilic bacteria? Mol Ecol. 2012. 21(7):1754-1768.[PubMed][Crossref]
  • Engel P, Martinson VG, Moran NA, Functional diversity withinthe simple gut microbiota of the honey bee. Proc Natl AcadSci USA. 2012. 109(27):11002-11007.[Crossref]
  • Koch H, Schmid-Hempel P, Socially transmitted gutmicrobiota protect bumble bees against an intestinal parasite. Proc Natl Acad Sci USA. 2011. 108(48):19288-19292.[Crossref]
  • Mattila HR, et al., Characterization of the active microbiotasassociated with honey bees reveals healthier and broadercommunities when colonies are genetically diverse. PLoSOne. 2012. 7(3):e32962.[Crossref]
  • Newton IL, Roeselers G, The effect of training set on theclassification of honey bee gut microbiota using the NaiveBayesian Classifier. BMC Microbiol. 2012. 12(1):221.[Crossref][PubMed]
  • Cox-Foster DL, et al., A metagenomic survey of microbesin honey bee colony collapse disorder. Science. 2007.318(5848):283-287.
  • Koch H, et al., Diversity and evolutionary patterns of bacterialgut associates of corbiculate bees. Mol Ecol. 2013. 22(7):2028-2044.[PubMed][Crossref]
  • Martinson VG, Moy J, Moran NA, Establishment ofcharacteristic gut bacteria during development of the honeybee worker. Appl Environ Microbiol. 2012. 78(8):2830-2840.[Crossref]
  • Mattila HR, Burke KM, Seeley TD, Genetic diversity withinhoney bee colonies increases signal production by waggledancingforagers. Proc Biol Sci. 2008. 275(1636):809-816.
  • Girard MB, Mattila HR, Seeley TD, Recruitment-dancesignals draw larger audiences when honey bee colonies havemultiple patrilines. Insectes Soc. 2011. 58(1):77-86.[Crossref][PubMed]
  • Mattila HR, Reeve HK, Smith ML, Promiscuous honey beequeens increase colony productivity by suppressing workerselfishness. Curr Biol. 2012. 22(21):2027-2031.[Crossref][PubMed]
  • Mattila HR, Seeley TD, Genetic diversity in honey beecolonies enhances productivity and fitness. Science. 2007.317(5836):362-364.
  • Cremer S, Armitage SA, Schmid-Hempel P, Social immunity.Curr Biol. 2007. 17(16):R693-R702.[Crossref]
  • Seeley TD, Tarpy DR, Queen promiscuity lowers disease withinhoney bee colonies. Proc Biol Sci. 2007. 274(1606):67-72.
  • Tarpy DR, TD Seeley, Lower disease infections in honeybee (Apis mellifera) colonies headed by polyandrous vsmonandrous queens. Naturwissenschaften. 2006. 93(4):195-199.[Crossref]
  • Broderick NA, Lemaitre B, Gut-associated microbes ofDrosophila melanogaster. Gut Microb. 2012. 3(4):307-321.[Crossref]
  • Chandler JA, Eisen JA, Kopp A, Yeast Communities ofDiverse Drosophila Species: Comparison of Two SymbiontGroups in the Same Hosts. Appl Environ Microbiol. 2012.78(20):7327-7336.[PubMed][Crossref]
  • Chandler JA, et al., Bacterial Communities of DiverseDrosophila Species: Ecological Context of a Host-MicrobeModel System. PLoS Genetics. 2011. 7(9): e1002272.[Crossref]
  • Shin SC, et al., Drosophila Microbiome Modulates HostDevelopmental and Metabolic Homeostasis via InsulinSignaling. Science. 2011. 334(6056):670-674.
  • Sharon G, et al., Commensal bacteria play a role in matingpreference of Drosophila melanogaster. Proc Natl Acad SciUSA. 2010. 107(46):20051-20056.[Crossref]
  • Ringo J, Sharon G, Segal D, Bacteria-induced sexualisolation in Drosophila. Fly (Austin). 2011 5(4) 310-315.[Crossref][PubMed]
  • Ridley EV, et al., Impact of the resident microbiota on thenutritional phenotype of Drosophila melanogaster. PLoS One.2012. 7(5):e36765.[Crossref]
  • Bosco-Drayon V, et al., Peptidoglycan sensing by thereceptor PGRP-LE in the Drosophila gut induces immuneresponses to infectious bacteria and tolerance to microbiota.Cell Host Microbe. 2012. 12(2):153-165.[Crossref]
  • Lederberg J, McCray AT, ‘Ome sweet ‘omics - A genealogicaltreasury of words. Scientist. 2001. 15(7):8.
  • Simister RL, et al., Sponge-specific clusters revisited:a comprehensive phylogeny of sponge-associatedmicroorganisms. Environ Microbiol. 2012. 14(2):517-524.[Crossref][PubMed]
  • Thomas T, et al., Functional genomic signatures of spongebacteria reveal unique and shared features of symbiosis.ISME J. 2010. 4(12):1557-67.[PubMed][Crossref]
  • Webster NS, et al., Deep sequencing reveals exceptionaldiversity and modes of transmission for bacterial spongesymbionts. Environ Microbiol. 2010. 12(8):2070-2082.[PubMed]
  • Rawls JF, et al., Reciprocal gut microbiota transplants fromzebrafish and mice to germ-free recipients reveal host habitatselection. Cell. 2006. 127(2):423-433.[Crossref][PubMed]
  • Rawls JF, Samuel BS, JI Gordon, Gnotobiotic zebrafish revealevolutionarily conserved responses to the gut microbiota.Proc Natl Acad Sci USA. 2004. 101(13):4596-4601.[Crossref]
  • Roeselers G, et al., Evidence for a core gut microbiota in thezebrafish. ISME J. 2011. 5(10):1595-1608.[Crossref][PubMed]
  • Sullam KE, et al., Environmental and ecological factors thatshape the gut bacterial communities of fish: a meta-analysis.Mol Ecol. 2012. 21(13):3363-3378.[Crossref]
  • Godoy-Vitorino F, et al., Developmental microbial ecology ofthe crop of the folivorous hoatzin. ISME J. 2010. 4(5):611-620.[Crossref]
  • Godoy-Vitorino F, et al., Differences in crop bacterialcommunity structure between hoatzins from differentgeographical locations. Res Microbiol. 2012. 163(3):211-220.[Crossref]
  • Godoy-Vitorino F, et al., Bacterial community in the crop ofthe hoatzin, a neotropical folivorous flying bird. Appl EnvironMicrobiol. 2008. 74(19):5905-5912.[Crossref]
  • Danzeisen JL, et al., Modulations of the chicken cecalmicrobiome and metagenome in response to anticoccidialand growth promoter treatment. PLoS One. 2011.6(11):e27949.[Crossref]
  • Hume ME, et al., Molecular identification and characterizationof ileal and cecal fungus communities in broilers givenprobiotics, specific essential oil blends, and under mixedEimeria infection. Foodborne Pathog Dis. 2012. 9(9):853-860.[PubMed][Crossref]
  • Nakphaichit M, et al., The effect of including Lactobacillusreuteri KUB-AC5 during post-hatch feeding on the growth and ileum microbiota of broiler chickens. Poult Sci. 2011.90(12):2753-2765.[Crossref]
  • Qu A, et al., Comparative metagenomics reveals host specificmetavirulomes and horizontal gene transfer elements in thechicken cecum microbiome. PLoS One. 2008. 3(8):e2945.[Crossref]
  • Lankau EW, Hong PY, Mackie RI, Ecological drift and localexposures drive enteric bacterial community differenceswithin species of Galapagos iguanas. Mol Ecol. 2012.21(7):1779-1788.[PubMed][Crossref]
  • Costello EK, et al., Postprandial remodeling of the gutmicrobiota in Burmese pythons. ISME J. 2010. 4(11):1375-1385.[PubMed][Crossref]
  • Phillips CD, et al., Microbiome analysis among bats describesinfluences of host phylogeny, life history, physiology andgeography. Mol Ecol. 2012. 21(11):2617-2627.[PubMed][Crossref]
  • Beloqui A, et al., Diversity of glycosyl hydrolases fromcellulose-depleting communities enriched from casts oftwo earthworm species. Appl Environ Microbiol. 2010.76(17):5934-5946.[PubMed][Crossref]
  • Andreotti R, et al., Assessment of bacterial diversity in thecattle tick Rhipicephalus (Boophilus) microplus through tagencodedpyrosequencing. BMC Microbiol. 2011. 11(1):6.[Crossref][PubMed]
  • Carpi G, et al., Metagenomic profile of the bacterialcommunities associated with Ixodes ricinus Ticks. PLoSOne. 2011. 6(10):e25604.[Crossref]
  • Hawlena H, et al., The arthropod, but not the vertebrate hostor its environment, dictates bacterial community compositionof fleas and ticks. ISME J. 2012. 7(1): 221-223.[PubMed]
  • Boissiere A, et al., Midgut microbiota of the malaria mosquitovector Anopheles gambiae and interactions with Plasmodiumfalciparum infection. PLoS Pathog. 2012. 8(5):e1002742.[Crossref]
  • Dinparast Djadid N, et al., Identification of the midgutmicrobiota of An. stephensi and An. maculipennis for theirapplication as a paratransgenic tool against malaria. PLoSOne. 2011. 6(12):e28484.[Crossref]
  • Wang Y, et al., Dynamic gut microbiome across life historyof the malaria mosquito Anopheles gambiae in Kenya. PLoSOne. 2011. 6(9):e24767.[Crossref]
  • Weiss B, Aksoy S, Microbiome influences on insect hostvector competence. Trends Parasitol. 2011. 27(11):514-522.[PubMed][Crossref]
  • Kohler T, et al., High-resolution analysis of gutenvironment and bacterial microbiota reveals functionalcompartmentation of the gut in wood-feeding highertermites (Nasutitermes spp.). Appl Environ Microbiol. 2012.78(13):4691-4701.[PubMed][Crossref]
  • Sudakaran S, et al., Geographical and ecological stabilityof the symbiotic mid-gut microbiota in European firebugs,Pyrrhocoris apterus (Hemiptera, Pyrrhocoridae). Mol Ecol.2012. 21(24):6134-6151.[Crossref][PubMed]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_micsm-2013-0001
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.