Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 1 | 1 |

Article title

From life to death: microRNAs in the fine tuning of the heart

Content

Title variants

Languages of publication

EN

Abstracts

EN
The heart is one of the most important vital
organs, and any malfunctioning of the heart and its
blood vessels may contribute to cardiovascular disorders.
Diseases of the cardiovascular system represent the most
common cause of human morbidity and mortality around
the globe. Thus, there is always a need for innovative new
therapies and diagnostics for cardiovascular disorders. In
the past decades, a plethora of tiny, endogenous, singlestranded
RNA sequences called microRNAs (miRNAs) has
been studied meticulously in cardiovascular development
and pathophysiology, providing a new dimension to the
heart’s biology. miRNAs posttranscriptional inhibit the
gene expression of specific mRNA targets through Watson–
Crick base pairing between the miRNA “seed region”
and the 3′ untranslated regions (UTRs) of target mRNAs.
Better recognized as “master switches”, miRNAs are
emerging as vital regulators of mammalian cardiovascular
development and disease and thus are helpful in
understanding therapeutic targets and diagnostics for
a variety of cardiovascular disorders. In this review, a
detailed discussion of the roles of various microRNAs in
cardiovascular development and pathophysiology with
potential therapeutics is considered.

Publisher

Year

Volume

1

Issue

1

Physical description

Dates

received
1 - 1 - 2014
online
12 - 12 - 2014
accepted
8 - 3 - 2014

Contributors

author
  • Department of Biotechnology,
    Assam University, Silchar-788011, India
author
  • Department of
    Biochemistry, University of Allahabad-211002, India
author
  • Department of
    Biochemistry, University of Allahabad-211002, India
  • Department of Biotechnology,
    Assam University, Silchar-788011, India

References

  • [1] Van Rooij E, Olson EN. MicroRNAs: Powerful new regulators ofheart disease and provocative therapeutic targets. J Clin Invest.2007; 117: 2369-2376.[Crossref]
  • [2] Liu N, Olson EN. MicroRNA regulatory networks in cardiovasculardevelopment. Dev Cell. 2010; 18: 510-525.[Crossref]
  • [3] Thum T. MicroRNA therapeutics in cardiovascular medicine.EMBO Mol Med. 2012; 4: 3-14.[Crossref]
  • [4] Small EM, Frost RJ, Olson EN. MicroRNAs add a new dimensionto cardiovascular disease. Circulation. 2010; 121: 1022-1032.[Crossref]
  • [5] van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, OlsonEN. Control of stress-dependent cardiac growth and geneexpression by a microRNA. Science. 2007; 316: 575-579.[Crossref]
  • [6] van Rooij E, Sutherland LB, Liu N, Williams AH, McAnallyJ, Gerard RD, Richardson JA, Olson EN. A signature patternof stress-responsive microRNAs that can evoke cardiachypertrophy and heart failure. Proc Natl Acad Sci U S A. 2006;103: 18255-18260.[Crossref]
  • [7] Sayed D, Hong C, Chen IY, Lypowy J, Abdellatif M. MicroRNAsplay an essential role in the development of cardiachypertrophy. Circ Res. 2007; 100: 416-424.[Crossref]
  • [8] Tatsuguchi M, Seok HY, Callis TE, Thomson JM, Chen J.F,Newman M, Rojas M, Hammond SM, Wang DZ. Expression ofmicroRNAs is dynamically regulated during cardiomyocytehypertrophy. J Mol Cell Cardiol. 2007; 42: 1137-1141.[Crossref]
  • [9] Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, BangML, Segnalini P, Gu Y, Dalton ND. et al. MicroRNA-133 controlscardiac hypertrophy. Nat Med. 2007; 13: 613-618.
  • [10] Cheng Y, Ji R, Yue J, Yang J, Liu X, Chen H, Dean DB, Zhang C.MicroRNAs are aberrantly expressed in hypertrophic heart: dothey play a role in cardiac hypertrophy?. Am J Pathol. 2007;170:1831-1840.[Crossref]
  • [11] Thum T, Galuppo P, Wolf C, Fiedler J, Kneitz S, van LaakeLW, Doevendans PA, Mummery CL, Borlak J, Haverich A.et al. MicroRNAs in the human heart: a clue to fetal genereprogramming in heart failure. Circulation. 2007; 116:258-267.[Crossref]
  • [12] Ikeda S, Kong SW, Lu J, Bisping E, Zhang H, Allen PD, Golub TR,Pieske B, Pu WT. Altered microRNA expression in human heartdisease. Physiol Genomics. 2007; 31: 367-373.[Crossref]
  • [13] Ji R, Cheng Y, Yue J, Yang J, Liu X, Chen H, Dean DB, ZhangC. MicroRNA expression signature and antisense-mediateddepletion reveal an essential role of MicroRNA in vascularneointimal lesion formation. Circ Res. 2007; 100:1579-1588.[Crossref]
  • [14] Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, Zhang Y, Xu C, Bai Y, WangH, et al. The muscle-specific microRNA miR-1 regulates cardiacarrhythmogenic potential by targeting GJA1 and KCNJ2. NatMed. 2007; 13: 486-491.
  • [15] Ambros V. The functions of animal microRNAs. Nature. 2004;431: 350-355.
  • [16] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronicgene lin-4 encodes small RNAs with antisense complementarityto lin-14. Cell. 1993; 75: 843-854.
  • [17] Wang Z, Luo X, Lu Y, Yang B. miRNAs at the heart of the matter. JMol Med (Berl). 2008; 86:771-783.[Crossref]
  • [18] Alvarez-Garcia I, Miska EA. MicroRNA functions in animaldevelopment and human disease. Development. 2005; 132:4653-4662.[Crossref]
  • [19] Dalmay T. MicroRNAs and cancer. J Intern Med. 2008; 263:366-375.
  • [20] Kumar M, Lu Z, Takwi AA, Chen W, Callander NS, Ramos KS,Young KH, Li Y. Negative regulation of the tumor suppressorp53 gene by microRNAs. Oncogene. 2011; 30: 843-853.[Crossref]
  • [21] Lukiw WJ. Micro-RNA speciation in fetal, adult and Alzheimer’sdisease hippocampus. Neuroreport. 2007; 18: 297-300.[Crossref]
  • [22] Holohan KN, Lahiri DK, Schneider BP, Foroud T, Saykin AJ.Functional microRNAs in Alzheimer’s disease and cancer:differential regulation of common mechanisms and pathway.Front Genet. 2012; 3: 323.
  • [23] Kumar M, Nath S, Prasad HK, Sharma GD, Li Y. MicroRNAs: anew ray of hope for diabetes mellitus. Protein Cell. 2012; 3:726-738.[Crossref]
  • [24] van de Bunt M, Gaulton KJ, Parts L, Moran I, Johnson PR,Lindgren CM, Ferrer J, Gloyn AL, McCarthy MI. The miRNA Profileof Human Pancreatic Islets and Beta-Cells and Relationship toType 2 Diabetes Pathogenesis. PLoS One. 2013; 8: e55272.
  • [25] Broderick JA, Zamore PD. MicroRNA therapeutics. Gene Ther.2011; 18: 1104-1110.[Crossref]
  • [26] Baroukh NN, Van Obberghen E. Function of microRNA-375and microRNA-124a in pancreas and brain. FEBS J. 2009; 276:6509-6521.
  • [27] Okamura K, Hagen JW, Duan H, Tyler DM, Lai EC. The mirtronpathway generates microRNA-class regulatory RNAs inDrosophila. Cell. 2007; 130: 89-100.[Crossref]
  • [28] Hennessy E, O’Driscoll L. Molecular medicine of microRNAs:structure, function and implications for diabetes. Expert RevMol Med. 2008; 10: e24.[Crossref]
  • [29] Small EM, Olson EN. Pervasive roles of microRNAs in cardiovascularbiology. Nature. 2011; 469: 336-342.
  • [30] Cordes KR, Srivastava D. MicroRNA regulation of cardiovasculardevelopment. Circ Res. 2009; 104: 724-732.[Crossref]
  • [31] Thum T. Cardiac dissonance without conductors: how dicerdepletion provokes chaos in the heart. Circulation. 2008; 118:1524-1527.[Crossref]
  • [32] Rao PK, Toyama Y, Chiang .R, Gupta S, Bauer M, Medvid R,Reinhardt F, Liao R, Krieger M, Jaenisch R. et al., Loss of cardiacmicroRNA-mediated regulation leads to dilated cardiomyopathyand heart failure. Circ Res. 2009; 105: 585-594.[Crossref]
  • [33] Poliseno L, Tuccoli A, Mariani L, Evangelista M, Citti L, WoodsK, Mercatanti A, Hammond S, Rainaldi G. MicroRNAs modulatethe angiogenic properties of HUVECs. Blood. 2006; 108:3068-3071.[Crossref]
  • [34] Chen JF, Murchison EP, Tang R, Callis TE, Tatsuguchi M, DengZ, Rojas M, Hammond SM, Schneider MD, Selzman CH. et al.Targeted deletion of Dicer in the heart leads to dilated cardiomyopathyand heart failure. Proc Natl Acad Sci U S A. 2008;105: 2111-2116.[Crossref]
  • [35] Zhao Y, Ransom JF, Li A, Vedantham V, von Drehle M, Muth A.N.,Tsuchihashi T., McManus M.T., Schwartz R.J., Srivastava D., Dysregulation of cardiogenesis, cardiac conduction, and cellcycle in mice lacking miRNA-1-2, Cell, 2007, 129, 303-317.
  • [36] da Costa Martins P.A., Bourajjaj M, Gladka M, Kortland M,van Oort RJ, Pinto YM, Molkentin JD, De Windt LJ. Conditionaldicer gene deletion in the postnatal myocardium provokesspontaneous cardiac remodeling. Circulation. 2008; 118:1567-1576.[Crossref]
  • [37] Ambros V. MicroRNAs: genetically sensitized worms reveal newsecrets. Curr Biol. 2010; 20: R598-600.[Crossref]
  • [38] Liu N, Williams AH, Kim Y, McAnally J, Bezprozvannaya S,Sutherland LB, Richardson JA, Bassel-Duby R, Olson EN. Anintragenic MEF2-dependent enhancer directs muscle-specificexpression of microRNAs 1 and 133. Proc Natl Acad Sci U S A.2007; 104: 20844-20849.
  • [39] Meder B, Katus HA, Rottbauer W. Right into the heart ofmicroRNA-133a. Genes Dev. 2008; 22: 3227-3231.
  • [40] Cordes KR, Srivastava D, Ivey KN. MicroRNAs in cardiacdevelopment, Pediatr Cardiol. 2010; 31: 349-356.[Crossref]
  • [41] Latronico MV, Catalucci D, Condorelli G. Emerging role ofmicroRNAs in cardiovascular biology. Circ Res. 2007; 101:1225-1236.[Crossref]
  • [42] Wang D, Chang PS, Wang Z, Sutherland L, Richardson JA, SmallE, Krieg PA, Olson EN. Activation of cardiac gene expressionby myocardin, a transcriptional cofactor for serum responsefactor. Cell. 2001; 105: 851-862.[Crossref]
  • [43] Zhao Y, Samal E, Srivastava D. Serum response factor regulatesa muscle-specific microRNA that targets Hand2 during cardiogenesis.Nature. 2005; 436: 214-220.
  • [44] Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, HammondSM, Conlon FL, Wang DZ. The role of microRNA-1 andmicroRNA-133 in skeletal muscle proliferation and differentiation.Nat Genet. 2006. 38: 228-233.
  • [45] Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA,Bassel-Duby R, Olson EN. microRNA-133a regulates cardiomyocyteproliferation and suppresses smooth muscle geneexpression in the heart. Genes Dev. 2008; 22: 3242-3254.
  • [46] Ivey KN, Muth A, Arnold J, King FW, Yeh RF, Fish JE, HsiaoEC, Schwartz RJ, Conklin BR, Bernstein HS. et al., MicroRNAregulation of cell lineages in mouse and human embryonicstem cells. Cell Stem Cell. 2008; 2: 219-229.[Crossref]
  • [47] Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD, IveyKN, Bruneau BG, Stainier DY, Srivastava D. miR-126 regulatesangiogenic signaling and vascular integrity. Dev Cell. 2008; 15:272-284.
  • [48] Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA,Richardson JA, Bassel-Duby R, Olson EN. The endothelialspecificmicroRNA miR-126 governs vascular integrity andangiogenesis. Dev Cell. 2008; 15: 261-271.
  • [49] Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, MuthAN, Lee TH, Miano JM, Ivey KN, Srivastava D. miR-145 andmiR-143 regulate smooth muscle cell fate and plasticity.Nature. 2009; 460:705-710.
  • [50] Xin M, Small EM, Sutherland LB, Qi X, McAnally J, Plato CF,Richardson JA, Bassel-Duby R, Olson EN. MicroRNAs miR-143and miR-145 modulate cytoskeletal dynamics and responsivenessof smooth muscle cells to injury. Genes Dev. 2009;23:2166-2178.
  • [51] Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E,Aldler H, Rattan S, Keating M, Rai K. et al., Frequent deletionsand down-regulation of micro- RNA genes miR15 and miR16 at13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U SA. 2002; 99: 15524-15529.
  • [52] Mishra PK, Tyagi N, Kumar M, Tyagi SC. MicroRNAs as atherapeutic target for cardiovascular diseases. J Cell Mol Med.2009; 13: 778-789.[Crossref]
  • [53] Rajabi M, Kassiotis C, Razeghi P, Taegtmeyer H. Return tothe fetal gene program protects the stressed heart: a stronghypothesis. Heart Fail Rev. 2007; 12: 331-343.[Crossref]
  • [54] Catalucci D, Gallo P, Condorelli G. MicroRNAs in cardiovascularbiology and heart disease. Circ Cardiovasc Genet. 2009; 2:402-408.[Crossref]
  • [55] McKinsey TA, Olson EN. Toward transcriptional therapies forthe failing heart: chemical screens to modulate genes. J ClinInvest. 2005; 115: 538-546.[Crossref]
  • [56] Da Costa Martins PA, De Windt LJ. MicroRNAs in control ofcardiac hypertrophy. Cardiovasc Res. 2012; 93: 563-572.[Crossref]
  • [57] Abraham WT, Gilbert EM, Lowes BD, Minobe WA, Larrabee P,Roden RL, Dutcher D, Sederberg J, Lindenfeld JA, Wolfel EE. etal., Coordinate changes in Myosin heavy chain isoform geneexpression are selectively associated with alterations in dilatedcardiomyopathy phenotype. Mol Med. 2002; 8: 750-760.
  • [58] van Rooij E, Marshall WS, Olson EN. Toward microRNA-basedtherapeutics for heart disease: the sense in antisense. CircRes. 2008; 103: 919-928.[Crossref]
  • [59] Morkin E. Control of cardiac myosin heavy chain geneexpression. Microsc Res Tech. 2000; 50: 522-531.[Crossref]
  • [60] Ikeda S, He A, Kong SW, Lu J, Bejar R, Bodyak N, Lee KH, MaQ, Kang PM, Golub TR. et al., MicroRNA-1 negatively regulatesexpression of the hypertrophy-associated calmodulin andMef2a genes. Mol Cell Biol. 2009; 29: 2193-2204.
  • [61] Li Q, Song XW, Zou J, Wang GK, Kremneva E, Li XQ, Zhu N, SunT, Lappalainen P, Yuan WJ. et al., Attenuation of microRNA-1derepresses the cytoskeleton regulatory protein twinfilin-1 toprovoke cardiac hypertrophy. J Cell Sci. 2010; 123: 2444-2452.
  • [62] Elia L, Contu R, Quintavalle M, Varrone F, Chimenti C, Russo MA,Cimino V, De Marinis L, Frustaci A, Catalucci D. et al., Reciprocalregulation of microRNA-1 and insulin-like growth factor-1 signaltransduction cascade in cardiac and skeletal muscle in physiologicaland pathological conditions. Circulation. 2009; 120:2377-2385.
  • [63] Topkara VK, Mann DL. Clinical applications of miRNAs in cardiacremodeling and heart failure. Per Med. 2010; 7: 531-548.[Crossref]
  • [64] Wang K, Long B, Zhou J, Li PF. miR-9 and NFATc3 regulatemyocardin in cardiac hypertrophy. J Biol Chem. 2010; 285:11903-11912.
  • [65] Yang Y, Ago T, Zhai P, Abdellatif M, Sadoshima J. Thioredoxin1 negatively regulates angiotensin II-induced cardiachypertrophy through upregulation of miR-98/let-7. Circ Res.2011; 108: 305-313.
  • [66] Han M, Yang Z, Sayed D, He M, Gao S, Lin L, Yoon S, AbdellatifM. GATA4 expression is primarily regulated via a miR-26b-dependentpost-transcriptional mechanism during cardiachypertrophy. Cardiovasc Res. 2012; 93: 645-654.[Crossref]
  • [67] Callis TE, Pandya K, Seok HY, Tang RH, Tatsuguchi M, Huang ZP,Chen JF, Deng Z, Gunn B, Shumate J. et al., MicroRNA-208a is aregulator of cardiac hypertrophy and conduction in mice. J ClinInvest. 2009;119: 2772-2786.
  • [68] Frost RJ, van Rooij E. miRNAs as therapeutic targets in ischemicheart disease. J Cardiovasc Transl Res. 2010; 3: 280-289. [Crossref]
  • [69] Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M,Galuppo P, Just S, Rottbauer W, Frantz S. et al., MicroRNA-21contributes to myocardial disease by stimulating MAP kinasesignalling in fibroblasts. Nature. 2008; 456:980-984.
  • [70] Sayed D, Rane S, Lypowy J, He M, Chen IY, Vashistha H, YanL, Malhotra A, Vatner D, Abdellatif M. MicroRNA-21 targetsSprouty2 and promotes cellular outgrowths. Mol Biol Cell.2008; 19: 3272-3282.
  • [71] Lin Z, Murtaza I, Wang K, Jiao J, Gao J, Li PF. miR-23a functionsdownstream of NFATc3 to regulate cardiac hypertrophy. ProcNatl Acad Sci U S A. 2009; 106: 12103-12108.[Crossref]
  • [72] Shieh J.T., Huang Y., Gilmore J., Srivastava D., Elevated miR-499levels blunt the cardiac stress response, PLoS One, 2011, 6,e19481.
  • [73] da Costa Martins PA, Salic K, Gladka MM, Armand AS, LeptidisS, el Azzouzi H, Hansen A, Coenen-de Roo CJ, Bierhuizen MF,van der Nagel R. et al., MicroRNA-199b targets the nuclearkinase Dyrk1a in an auto-amplification loop promotingcalcineurin/NFAT signalling. Nat Cell Biol. 2010; 12: 1220-1227.
  • [74] Rane S, He M, Sayed D, Yan L, Vatner D, Abdellatif M. Anantagonism between the AKT and beta-adrenergic signalingpathways mediated through their reciprocal effects onmiR-199a-5p. Cell Signal. 2010; 22: 1054-1062.
  • [75] Diez J. Do microRNAs regulate myocardial fibrosis?. Nat ClinPract Cardiovasc Med. 2009; 6:88-89.
  • [76] Duisters RF, Tijsen AJ, Schroen B, Leenders JJ, Lentink V, van derMade I, Herias V, van Leeuwen RE, Schellings MW, BarenbrugP. et al., miR-133 and miR-30 regulate connective tissue growthfactor: implications for a role of microRNAs in myocardial matrixremodeling. Circ Res. 2009; 104: 170-178, 176p following 178.
  • [77] van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, NaseemRH, Marshall WS, Hill JA, Olson EN. Dysregulation of microRNAsafter myocardial infarction reveals a role of miR-29 in cardiacfibrosis. Proc Natl Acad Sci U S A. 2008; 105: 13027-13032.
  • [78] Roy S, Khanna S, Hussain SR, Biswas S, Azad A, Rink C,Gnyawali S, Shilo S, Nuovo GJ, Sen CK. MicroRNA expressionin response to murine myocardial infarction: miR-21 regulatesfibroblast metalloprotease-2 via phosphatase and tensinhomologue. Cardiovasc Res. 2009; 82:21-29.[Crossref]
  • [79] Yang B, Lu Y, Wang Z. Control of cardiac excitability bymicroRNAs. Cardiovasc Res. 2008; 79: 571-580.[PubMed][Crossref]
  • [80] Ross R. Atherosclerosis--an inflammatory disease. N Engl JMed. 1999; 340: 115-126.
  • [81] Urbich C, Kuehbacher A, Dimmeler S. Role of microRNAs invascular diseases, inflammation, and angiogenesis. CardiovascRes. 2008; 79: 581-588.[Crossref]
  • [82] Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ.MicroRNA-126 regulates endothelial expression of vascularcell adhesion molecule 1. Proc Natl Acad Sci U S A. 2008; 105:1516-1521.
  • [83] Rayner KJ, Moore KJ. The plaque “micro” environment:microRNAs control the risk and the development of atherosclerosis.Curr Atheroscler Rep. 2012; 14: 413-421.[Crossref]
  • [84] Elia L, Quintavalle M, Zhang J, Contu R, Cossu L, Latronico MV,Peterson KL, Indolfi C, Catalucci D, Chen J. et al., The knockoutof miR-143 and -145 alters smooth muscle cell maintenance andvascular homeostasis in mice: correlates with human disease.Cell Death Differ. 2009; 16: 1590-1598.
  • [85] Ceppi M, Pereira PM, Dunand-Sauthier I, Barras E, Reith W,Santos MA, Pierre P. MicroRNA-155 modulates the interleukin-1signaling pathway in activated human monocyte-deriveddendritic cells. Proc Natl Acad Sci U S A. 2009; 106: 2735-2740.
  • [86] Wei Y, Nazari-Jahantigh M, Neth P, Weber C, Schober A.MicroRNA-126, -145, and -155: a therapeutic triad in atherosclerosis?.Arterioscler Thromb Vasc Biol. 2013; 33: 449-454.
  • [87] Gao W, He HW, Wang ZM, Zhao H, Lian XQ, Wang YS, Zhu J, YanJJ, Zhang DG, Yang Z.J.et al., Plasma levels of lipometabolismrelatedmiR-122 and miR-370 are increased in patients withhyperlipidemia and associated with coronary artery disease.Lipids Health Dis. 2012; 11: 55.
  • [88] Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A,Liebetrau C, Weber M, Hamm CW, Roxe T, Muller-Ardogan M.et al., Circulating microRNAs in patients with coronary arterydisease. Circ Res. 2010; 107:677-684.[Crossref]
  • [89] Ramirez CM, Davalos A, Goedeke L, Salerno AG, WarrierN, Cirera-Salinas D, Suarez Y, Fernandez-Hernando C.MicroRNA-758 regulates cholesterol efflux throughposttranscriptional repression of ATP-binding cassettetransporter A1. Arterioscler Thromb Vasc Biol. 2011;31:2707-2714.
  • [90] Rayner KJ, Esau CC, Hussain FN, McDaniel AL, Marshall SM, vanGils JM, Ray TD, Sheedy FJ, Goedeke L, Liu X. et al., Inhibitionof miR-33a/b in non-human primates raises plasma HDL andlowers VLDL triglycerides. Nature. 2011; 478: 404-407.
  • [91] Kuhnert F, Mancuso MR, Hampton J, Stankunas K, Asano T,Chen CZ, Kuo CJ. Attribution of vascular phenotypes of themurine Egfl7 locus to the microRNA miR-126. Development.2008; 135:3989-3993.
  • [92] Fasanaro P, D’Alessandra Y, Di Stefano V, Melchionna R, RomaniS, Pompilio G, Capogrossi MC, Martelli F. MicroRNA-210modulates endothelial cell response to hypoxia and inhibitsthe receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem.2008; 283: 15878-15883.
  • [93] Pulkkinen K, Malm T, Turunen M, Koistinaho J, Yla-HerttualaS. Hypoxia induces microRNA miR-210 in vitro and in vivoephrin-A3 and neuronal pentraxin 1 are potentially regulated bymiR-210. FEBS Lett. 2008; 582: 2397-2401.
  • [94] Kim HW, Haider HK, Jiang S, Ashraf M. Ischemic preconditioningaugments survival of stem cells via miR-210 expressionby targeting caspase-8-associated protein 2. J Biol Chem.2009; 284: 33161-33168.
  • [95] Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M,Fischer A, Burchfield J, Fox H, Doebele C, Ohtani K. et al.,MicroRNA-92a controls angiogenesis and functional recovery ofischemic tissues in mice. Science. 2009. 324: 1710-1713.96] Dews M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel E,Furth EE, Lee WM, Enders GH, Mendell JT. et al., Augmentationof tumor angiogenesis by a Myc-activated microRNA cluster.Nat Genet. 2006; 38: 1060-1065.
  • [97] Fox CS, Coady S, Sorlie PD, D’Agostino RB, Sr, Pencina MJ,Vasan RS, Meigs JB, Levy D, Savage PJ. Increasing cardiovasculardisease burden due to diabetes mellitus: theFramingham Heart Study, Circulation. 2007; 115: 1544-1550.[Crossref]
  • [98] Bouzeghrane F, Reinhardt DP, Reudelhuber TL, ThibaultG. Enhanced expression of fibrillin-1, a constituent of themyocardial extracellular matrix in fibrosis. Am J Physiol HeartCirc Physiol. 2005; 289: H982-991.
  • [99] Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, WestAB. Myofibroblasts. I. Paracrine cells important in health anddisease. Am J Physiol. 1999; 277: C1-9.[Crossref]
  • [100] Long G, Wang F, Duan Q, Chen F, Yang S, Gong W, Wang Y, ChenC, Wang DW. Human circulating microRNA-1 and microRNA-126as potential novel indicators for acute myocardial infarction. IntJ Biol Sci. 2012; 8: 811-818.
  • [101] Cheng Y, Liu X, Zhang S, Lin Y, Yang J, Zhang C. MicroRNA-21protects against the H(2)O(2)-induced injury on cardiacmyocytes via its target gene PDCD4. J Mol Cell Cardiol. 2009;47: 5-14.
  • [102] Rane S, He M, Sayed D, Vashistha H, Malhotra A, Sadoshima J,Vatner DE, Vatner SF, Abdellatif M. Downregulation of miR-199aderepresses hypoxia-inducible factor-1alpha and Sirtuin 1 andrecapitulates hypoxia preconditioning in cardiac myocytes. CircRes. 2009; 104: 879-886.
  • [103] Tang X, Tang G, Ozcan S. Role of microRNAs in diabetes.Biochim Biophys Acta. 2008; 1779: 697-701.
  • [104] Katare R, Caporali A, Zentilin L, Avolio E, Sala-Newby G,Oikawa A, Cesselli D, Beltrami AP, Giacca M, Emanueli C. etal., Intravenous gene therapy with PIM-1 via a cardiotropicviral vector halts the progression of diabetic cardiomyopathythrough promotion of prosurvival signaling. Circ Res. 2011;108: 1238-1251.
  • [105] Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, LimB, Rigoutsos I. A pattern-based method for the identificationof MicroRNA binding sites and their corresponding heteroduplexes.Cell. 2006; 126: 1203-1217.[Crossref]
  • [106] van Rooij E, Olson EN. MicroRNA therapeutics for cardiovasculardisease: opportunities and obstacles. Nat Rev DrugDiscov. 2012; 11: 860-872.[Crossref]
  • [107] Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges:competitive inhibitors of small RNAs in mammalian cells. NatMethods. 2007; 4: 721-726.[Crossref]
  • [108] Divakaran V, Mann DL. The emerging role of microRNAs incardiac remodeling and heart failure. Circ Res. 2008; 103:1072-1083.[Crossref]
  • [109] Mukhopadhyay P., Pacher P., Das D.K., MicroRNA signatures ofresveratrol in the ischemic heart, Ann N Y Acad Sci, 2011, 1215:109-116.
  • [110] Mukhopadhyay P, Mukherjee S, Ahsan K, Bagchi A, PacherP, Das DK. Restoration of altered microRNA expression in theischemic heart with resveratrol. PLoS One. 2010; 5: e15705.[Crossref]
  • [111] Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, TomodaK, Yamanaka S. Induction of pluripotent stem cells from adulthuman fibroblasts by defined factors. Cell. 2007; 131: 861-872.[Crossref]
  • [112] Hatfield S, Ruohola-Baker H. microRNA and stem cell function.Cell Tissue Res. 2008; 331: 57-66.
  • [113] Takaya T, Nishi H, Horie T, Ono K, Hasegawa K. Roles ofmicroRNAs and myocardial cell differentiation. Prog Mol BiolTransl Sci. 2012; 111: 139-152.[Crossref]
  • [114] Passier R, van Laake LW, Mummery CL. Stem-cell-based therapyand lessons from the heart. Nature. 2008; 453:322-329.
  • [115] Mishra PK, Tyagi N, Kundu S, Tyagi SC. MicroRNAs are involvedin homocysteine-induced cardiac remodeling, Cell BiochemBiophys. 2009; 55: 153-162.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_micrnat-2014-0003
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.