Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2014 | 1 | 1 |

Article title

Circulating MicroRNAs as Biomarkers in Coronary Heart Disease and Heart Failure


Title variants

Languages of publication



MicroRNAs (miRNAs) are small non-coding,
single-stranded RNAs (19–25 nucleotides long) that regulate
expression of multiple target genes, predominantly by
binding to the 3′ untranslated region of messenger RNA
(mRNA) transcripts, resulting either in translational
inhibition or mRNA degradation. miRNAs are found in
many bodily fluids, including plasma and serum, and
are protected from degradation in the circulation through
association with lipids, proteins, or microparticles, making
them attractive disease biomarker candidates. Circulating
levels of cardiac miRNAs (including miR-1, miR-133a,
miR-208a, miR-208b, and miR-499) have been frequently
reported as elevated in both coronary heart disease
(CHD) and heart failure (HF) and have been proposed as
candidate biomarkers that reflect the severity of myocardial
injury. Subsequent large, array-based screening studies
comparing patients and controls have identified altered
expression of additional miRNAs, not just those of cardiac
origin. However, among these studies there has been
little consensus as to which miRNAs are top candidates
for diagnosis or prognosis in either CHD or HF. The
measurement of circulating miRNAs is further complicated
by the timing of collection, especially after acute cardiac
events while miRNA levels in blood may be rapidly
changing; confounding influences from medications or
contaminating blood cells at the time of sampling; and the
need for standardization of normalization strategies. This
review evaluates recent developments in the identification
of circulating miRNAs as markers for diagnosis and
prognosis in CHD and HF, and the methodological issues in
measurement of circulating miRNAs.







Physical description


12 - 9 - 2014
28 - 2 - 2014
4 - 5 - 2014


  • Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch, PO Box 4345, Christchurch 8140, New Zealand
  • Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch, PO Box 4345, Christchurch 8140, New Zealand


  • [1] Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350-5.
  • [2] Creemers EE, Tijsen AJ, Pinto YM. Circulating microRNAs: Novel Biomarkers and Extracellular Communicators in Cardiovascular Disease? Circ Res. 2012;110(3):483-95.[Crossref]
  • [3] Xu J, Zhao J, Evan G, Xiao C, Cheng Y, Xiao J. Circulating microRNAs: Novel biomarkers for cardiovascular diseases. J Mol Med (Berl). 2011.
  • [4] Karunakaran D, Rayner K. MicroRNAs in cardiovascular health: From order to disorder. Endocrinology. 2013;154(1):4000-9.[Crossref]
  • [5] Abdellatif M. Differential Expression of microRNAs in different disease states. Circ Res. 2012;110:638-50.[Crossref]
  • [6] Divakaran V, Mann D. The emerging role of microRNAs in cardiac remodeling and heart failure. Circ Res. 2008;103:1072-83.[Crossref]
  • [7] Kumarswamy R, Thum T. Non-coding RNAs in cardiac remodeling and heart failure. Circ Res. 2013;113:676-89.[Crossref]
  • [8] Cortez M, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood A, Calin G. MicroRNAs in body fluids - the mix of hormones and biomarkers. Nat Rev Clin Oncol. 2011;8:467-77.[Crossref][PubMed]
  • [9] Boon RA, Vickers KC. Intercellular transport of microRNAs. Arterioscler Thromb Vasc Biol. 2013;33(2):186-92.[Crossref]
  • [10] Rayner KJ, Hennessy EJ. Extracellular communication via microRNA: Lipid particles have a new message. Journal of Lipid Research. 2013;54(5):1174-81.[Crossref]
  • [11] Turchinovich A, Weiz L, Burwinkel B. Extracellular MiRNAs: The mystery of their origin and function. Trends Biochem Sci. 2012;37(11):460-5.[Crossref]
  • [12] Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654-9.[Crossref]
  • [13] Zernecke A, Bidzhekov K, Noels H, et al. Delivery of microRNA-126 by apoptotic bodies induces Cxcl12-dependent vascular protection. Science Signaling. 2009;2(100):ra81.
  • [14] Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011;13(4):423-33.[Crossref]
  • [15] Arroyo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Nat Acad Sci USA. 2011;108(12):5003-8.[Crossref]
  • [16] Simpson RJ, Jensen SS, Lim JW. Proteomic Profiling of exosomes: Current perspectives. Proteomics. 2008;8(19):4083-99.[Crossref]
  • [17] Thery C, Boussac M, Veron P, et al. Proteomic analysis of dendritic cell-derived exosomes: A secreted subcellular compartment distinct from apoptotic vesicles. J Immunol. 2001;166(12):7309-18.[Crossref]
  • [18] Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: Artefacts no more. Trends Cell Biol. 2009;19(2):43-51.[Crossref]
  • [19] Huber J, Vales A, Mitulovic G, et al. Oxidized membrane vesicles and blebs from apoptotic cells contain biologically active oxidized phospholipids that induce monocyte-endothelial interactions. Arterioscler Thromb Vasc Biol. 2002;22(1):101-7.[Crossref]
  • [20] Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011;39(16):7223-33.[Crossref]
  • [21] Wang K, Zhang S, Weber J, Baxter D, Galas DJ. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res. 2010;38(20):7248-59.[Crossref]
  • [22] Diehl P, Fricke A, Sander L, et al. Microparticles: Major transport vehicles for distinct microRNAs in circulation. Cardiovasc Res. 2012;93(4):633-44.[Crossref]
  • [23] Finn NA, Searles CD. Using information theory to assess the communicative capacity of circulating microRNA. Biochem Biophys Res Commun. 2013;440(1):1-7.[Crossref]
  • [24] De Rosa S, Fichtlscherer S, Lehmann R, Assmus B, Dimmeler S, Zeiher AM. Transcoronary concentration gradients of circulating microRNAs. Circulation. 2011;124(18):1936-44.[Crossref]
  • [25] Jansen F, Yang X, Hoelscher M, et al. Endothelial microparticle-mediated transfer of microRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles. Circulation. 2013;128(18):2026-38.
  • [26] Hergenreider E, Heydt S, Tréguer K, et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol. 2012;14(3):249-56.[Crossref]
  • [27] Zhang Y, Liu D, Chen X, et al. Secreted monocytic mir-150 enhances targeted endothelial cell migration. Molecular Cell. 2010;39(1):133-44.
  • [28] Dangwal S, Thum T. MicroRNA therapeutics in cardiovascular disease models. Ann Rev Pharmocol Toxicol. 2013;ePub ahead of print 2013/10/12.
  • [29] Care A, Catalucci D, Felicetti F, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007;13(5):613-8.
  • [30] Hullinger TG, Montgomery RL, Seto AG, et al. Inhibition of mir-15 protects against cardiac ischemic injury. Circ Res. 2012;110(1):71-81.[Crossref]
  • [31] Montgomery RL, Hullinger TG, Semus HM, et al. Therapeutic inhibition of mir-208a improves cardiac function and survival during heart failure. Circulation. 2011;124(14):1537-47.
  • [32] Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP Kinase signalling in fibroblasts. Nature. 2008;456(7224):980-4.
  • [33] Ucar A, Gupta SK, Fiedler J, et al. The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat Commun. 2012;3:1078.
  • [34] van Rooij E, Sutherland LB, Thatcher JE, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of mir-29 in cardiac fibrosis. Proc Natl Acad Sci USA. 2008;105(35):13027-32.[Crossref]
  • [35] Murray C, Vos T, Lozano R, et al. Disability-adjusted life years (DALYS) for 291 diseases and injuries in 21 regions, 1990–2010: A Systematic analysis for the global burden of disease study 2010. Lancet. 2012;380:2197-223.
  • [36] Perrone-Filardi P, Musella F, Savarese G, et al. Coronary computed tomography: Current role and future perspectives for cardiovascular risk stratification. Eur Heart J Cardiovasc Imaging. 2012;13:453-8.[Crossref]
  • [37] Hausleiter J, Meyer T, Hermann F, et al. Estimated radiation dose associated with cardiac CT angiography. J Am Med Assoc. 2009;301(5):500-7.
  • [38] Cipollone F, Felicioni L, Sazani R, et al. A unique microRNA signature associated with plaque instability in humans. Stroke. 2011;42:2556-63.[Crossref]
  • [39] Zampetaki A, Willeit P, Tilling L, et al. Prospective study on circulating microRNAs and risk of myocardial infarction. J Am Coll Cardiol. 2012;60(4):290-9.[Crossref]
  • [40] van Rooij E, Quiat D, Johnson BA, et al. A Family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell. 2009;17(5):662-73.[Crossref]
  • [41] Adachi T, Nakanishi M, Otsuka Y, et al. Plasma microRNA 499 as a biomarker of acute myocardial infarction. Clin Chem. 2010;56(7):1183-5.
  • [42] Ai J, Zhang R, Li Y, et al. Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochem Biophys Res Commun. 2010;391(1):73-7.[Crossref]
  • [43] Cheng Y, Tan N, Yang J, et al. A translational study of circulating cell-free microRNA-1 in acute myocardial infarction. Clin Sci. 2010;119(2):87-95.[Crossref]
  • [44] Corsten MF, Dennert R, Jochems S, et al. Circulating microRNA-208b and microRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet. 2010;3(6):499-506.
  • [45] Gidlöf O, Andersson P, van der Pals J, Götberg M, Erlinge D. Cardiospecific microRNA plasma levels correlate with troponin and cardiac function in patients with ST elevation myocardial infarction, are selectively dependent on renal elimination, and can be detected in urine samples. Cardiology. 2011;118:217-26.[Crossref]
  • [46] Kuwabara Y, Ono K, Horie T, et al. Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ Cardiovasc Genet. 2011;4(4):446-54.
  • [47] Wang GK, Zhu JQ, Zhang JT, et al. Circulating microRNA: A novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J. 2010;31(6):659-66.[Crossref]
  • [48] Widera C, Gupta SK, Lorenzen JM, et al. Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. J Mol Cell Cardiol. 2011;51(5):872-5.[Crossref]
  • [49] Long G, Wang F, Duan Q, et al. Human circulating microRNA-1 and microRNA-126 as potential novel indicators for acute myocardial infarction. Int J Biol Sci. 2012;8(6):811-8.
  • [50] Lu H-Q, Liang C, He Z-Q, Fan M, Wu Z-G. Circulating mir-214 is associated with the severity of coronary artery disease. J Geriatr Cardiol. 2013;10:34-8.
  • [51] Wang F, Long G, Zhao C, et al. Plasma microRNA-133a is a new marker for both acute myocardial infarction and underlying coronary artery stenosis. Journal of Translational Medicine. 2013;11:222.
  • [52] Lippi G, Mattiuzzi C, Cervellinm G. Circulating microRNAs (mirs) for diagnosing acute myocardial infarction: meta-analysis of available studies. Intl J Cardiol. 2013;167:277-305.[Crossref]
  • [53] Weber M, Baker M, Patel R, Quyyumi A, Bao G, Searles C. MicroRNA expression profile in CAD patients and the impact of ACEI/ARB. Cardiol Res Pract. 2011;Article ID 532915.[Crossref]
  • [54] Meder B, Keller A, Vogel B, et al. MicroRNA signatures in total peripheral blood as novel biomarkers for acute myocardial infarction. Basic Res Cardiol. 2011;106:13-23.[Crossref]
  • [55] Taurino C, Miller W, McBride M, et al. Gene expression profiling in whole blood of patients with coronary artery disease. Clin Sci. 2010;119:335-43.[Crossref]
  • [56] Fichtlscherer S, De Rosa S, Fox H, et al. Circulating microRNAs in patients with coronary artery disease. Circ Res. 2010;107(5):677-84.[Crossref]
  • [57] Pritchard C, Kroh EM, Wood B, et al. Blood cell origin of circulating microRNAs: A cautionary note for cancer biomarker studies. Cancer Prev Res. 2012;5(3):492-7.[Crossref]
  • [58] Hoekstra M, van der Lans C, Halvorsen B, et al. The Peripheral blood mononuclear cell microRNA signature of coronary artery disease. Biochem Biophys Res Commun. 2010;394:792-7.[Crossref]
  • [59] Takahashi Y, Satoh M, Minami Y, Tabuchi T, Itoh T, Nakamura M. Expression of mir-146a/b is associated with the toll-like receptor 4 signal in coronary artery disease: Effect of renin–angiotensin system blockade and statins on miRNA-146a/b and toll-like receptor 4 levels. Clin Sci. 2010;119:395-405.[Crossref]
  • [60] Freedman J, Ercan B, Morin K, et al. The distribution of circulating microRNA and their relation to coronary disease. F1000Research. 2012;1:50.
  • [61] D’Alessandra Y, Devanna P, Limana F, et al. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J. 2010;31(22):2765-73.[Crossref]
  • [62] Vogel B, Keller A, Frese K, et al. Refining diagnostic microRNA signatures by whole-miRNome kinetic analysis in acute myocardial infarction. Clin Chem. 2013;59(2):410-8.[Crossref]
  • [63] Zile MR, Mehurg SM, Arroyo JE, Stroud RE, DeSantis SM, Spinale FG. Relationship between the temporal profile of plasma microRNA and left ventricular remodeling in patients after myocardial infarction. Circ Cardiovasc Genet. 2011;4(6):614-9.[Crossref]
  • [64] Liebetrau C, Möllmann H, Dörr O, et al. Release kinetics of circulating muscle-enriched microRNAs in patients undergoing transcoronary ablation of septal hypertrophy. J Am Coll Cardiol. 2013;62(11):992-8.[Crossref]
  • [65] Eitel I, Adams V, Dieterich P, et al. Relation of circulating microRNA-133a concentrations with myocardial damage and clinical prognosis in ST-elevation myocardial infarction. Am Heart J. 2012;164:706-14.
  • [66] Matsumoto S, Sakata Y, Nakatani D, et al. A Subset of circulating microRNAs are predictive for cardiac death after discharge for acute myocardial infarction. Biochem Biophys Res Commun.. 2012;427:280-4.
  • [67] Zhang R, Niu H, Bana T, et al. Elevated plasma microRNA-1 predicts heart failure after acute myocardial infarction. Intl J Cardiol. 2012;166(1):259-60.
  • [68] Devaux Y, Vausort M, McCann G, et al. MicroRNA-150 a novel marker of left ventricular remodeling after acute myocardial infarction. Circ Cardiovasc Genet. 2013;6:290-8.[Crossref]
  • [69] Matsumoto S, Sakata Y, Suna S, et al. Circulating P53-responsive microRNAs are predictive indicators of heart failure after acute myocardial infarction. Circ Res. 2013;113:322-6.[Crossref]
  • [70] Fukushima Y, Nakanishi M, Nonogi H, Goto Y, Iwai N. Assessment of plasma miRNAs in congestive heart failure. Circ J. 2011;75:336-40.[Crossref]
  • [71] Voellenkle C, van Rooij J, Cappuzzello C, et al. MicroRNA signatures in peripheral blood mononuclear cells of chronic heart failure patients. Physiol Genomics. 2010;42:420-6.[Crossref]
  • [72] Gupta M, Halley C, Duan Z-H, et al. Mirna-548c: A specific signature in circulating PBMCs from dilated cardiomyopathy patients. J Mol Cell Cardiol. 2013;62:131-41.
  • [73] Tijsen A, Creemers E, Moerland P, et al. Mir423-5p as a circulating biomarker for heart failure. Circ Res. 2010;106:1035-9.
  • [74] Goren Y, Kushnir M, Zafrir B, Tabak S, Lewis B, Amir O. Serum levels of microRNAs in patients with heart failure. Eur J Heart Fail. 2012;14:147-54.[Crossref]
  • [75] Ellis K, Cameron V, Troughton R, Frampton C, Ellmers L, Richards A. Circulating microRNAs as candidate markers to distinguish heart failure in breathless patients. Eur J Heart Fail. 2013;15:1138-47.[Crossref]
  • [76] Tutarel O, Dangwal S, Bretthauer J, et al. Circulating mir-423_5p fails as a biomarker for systemic ventricular function in adults after atrial repair for transposition of the great arteries. Intl J Cardiol. 2013;167:63-6.
  • [77] Endo K, Naito Y, Ji X, et al. MicroRNA 210 as a biomarker for congestive heart failure. Biol Pharm Bull. 2013;36(1):48-54.[Crossref]
  • [78] Qiang L, Hong L, Ningfu W, Huaihong C, Jing W. Expression of mir-126 and mir-508-5p in endothelial progenitor cells is associated with the prognosis of chronic heart failure patients. Intl J Cardiol. 2013;168:2082-8.
  • [79] Pilgrim T, Wyss T. Takotsubo cardiomyopathy or transient left ventricular apical ballooning syndrome: A systematic review. Intl J Cardiol. 2008;124:283-92.[Crossref]
  • [80] Jaguszewski M, Osipova J, Ghadri J-R, et al. A signature of circulating microRNAs differentiates takotsubo cardiomyopathy from acute myocardial infarction. Eur Heart J. 2013;Advance Access published September 17, 2013.
  • [81] Marfella R, Di Filippo C, Potenza N, et al. Circulating microRNA Changes in heart failure patients treated with cardiac resynchronization therapy: responders vs. non-responders. Eur Heart J. 2013;15:1277-88.[Crossref]
  • [82] García R, Villar A, Cobo M, et al. Circulating levels of mir-133a predict the regression potential of left ventricular hypertrophy after valve replacement surgery in patients with aortic stenosis. J Am Heart Assoc. 2013;2:e000211.
  • [83] Blondal T, Jensby Nielsen S, Baker A, et al. Assessing sample and miRNA profile quality in serum and plasma or other biofluids. Methods. 2012.
  • [84] Huang X, Yuan T, Tschannen M, et al. Characterization of human plasma-derived exosomal rNAS by deep sequencing. BMC genomics. 2013;14:319.[Crossref]
  • [85] Wang K, Yuan Y, Cho JH, McClarty S, Baxter D, Galas DJ. Comparing the microRNA Spectrum between serum and plasma. PLoS One. 2012;7(7).
  • [86] Geiss GK, Bumgarner RE, Birditt B, et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol. 2008;26(3):317-25.[Crossref]
  • [87] Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. RNA-Seq: An Assessment of technical reproducibility and comparison with gene expression arrays. Genome Research. 2008;18(9):1509-17.[Crossref]
  • [88] Boeckel JN, Thome CE, Leistner D, Zeiher AM, Fichtlscherer S, Dimmeler S. Heparin selectively affects the quantification of microRNAs in human blood samples. Clin Chem. 2013;59(7):1125-7.[Crossref]
  • [89] Cheng HH, Yi HS, Kim Y, et al. Plasma processing conditions substantially influence circulating microRNA biomarker levels. PLoS One. 2013;8(6):e64795.[Crossref]
  • [90] de Boer HC, van Solingen C, Prins J, et al. Aspirin treatment hampers the use of plasma microRNA-126 as a biomarker for the progression of vascular disease. Eur Heart J. 2013;34(44):3451-7.
  • [91] Kaudewitz D, Lee R, Willeit P, et al. Impact of intravenous heparin on quantification of circulating microRNAs in patients with coronary artery disease. Thromb Haemost. 2013;110(3):609-15.[Crossref]
  • [92] Willeit P, Zampetaki A, Dudek K, et al. Circulating microRNAs as novel biomarkers for platelet activation. Circ Res. 2013;112(4):595-600.[Crossref]
  • [93] McDonald JS, Milosevic D, Reddi HV, Grebe SK, Algeciras-Schimnich A. Analysis of circulating microRNA: Preanalytical and analytical challenges. Clin Chem. 2011;57(6):833-40.[Crossref]
  • [94] Zampetaki A, Mayr M. Analytical challenges and technical limitations in assessing circulating miRNAs. Thromb Haemost. 2012;108(4):592-8.[Crossref]
  • [95] Neuhoff V, Schill WB, Sternbach H. Micro-analysis of pure deoxyribonucleic acid-dependent ribonucleic acid polymerase from escherichia coli. Action of heparin and rifampicin on structure and function. Biochemical J. 1970;117(3):623-31.
  • [96] Satsangi J, Jewell DP, Welsh K, Bunce M, Bell JI. Effect of heparin on polymerase chain reaction. Lancet. 1994;343(8911):1509-10.
  • [97] Yokota M, Tatsumi N, Nathalang O, Yamada T, Tsuda I. Effects of heparin on polymerase chain reaction for blood white cells. J Clin Lab Anal. 1999;13(3):133-40.[Crossref]
  • [98] Kim DJ, Linnstaedt S, Palma J, et al. Plasma Components affect accuracy of circulating cancer-related microRNA quantitation. J Mol Diagn : JMD. 2012;14(1):71-80.[Crossref]
  • [99] Frelinger AL, 3rd, Furman MI, Linden MD, et al. Residual arachidonic acid-induced platelet activation via an adenosine diphosphate-dependent but cyclooxygenase-1- and cyclooxygenase-2-independent pathway: A 700-patient study of aspirin resistance. Circulation. 2006;113(25):2888-96.
  • [100] Landry P, Plante I, Ouellet DL, Perron MP, Rousseau G, Provost P. Existence of a microRNA pathway in anucleate platelets. Nat Struct Mol Biol. 2009;16(9):961-6.[Crossref]
  • [101] Andersen CL, Jensen JL, Orntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64(15):5245-50.[Crossref]
  • [102] Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3(7):RESEARCH0034.[Crossref]
  • [103] Kang K, Peng X, Luo J, Gou D. Identification of circulating miRNA biomarkers based on global quantitative real-time PCR profiling. J Anim Sci Biotechnol. 2012;3(1):4.[Crossref]
  • [104] Pizzamiglio S, Bottelli S, Ciniselli CM, et al. A normalization strategy for the analysis of plasma microRNA qPCR data in colorectal cancer. Int J Cancer. 2013.
  • [105] Mestdagh P, Van Vlierberghe P, De Weer A, et al. A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol. 2009;10(6):R64.[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.