Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2014 | 1 | 1 |

Article title

MicroRNAs: emerging regulators for development of pancreatic islet lineages


Title variants

Languages of publication



MicroRNAs belong to a family of small (-23 nt) non-coding RNAs that mediate posttranscriptional gene silencing. They are emerging as important new regulators of differentiation and development. Knowledge of their role in pancreas and islet development, may help in developing a regenerative therapy for diabetes mellitus, a metabolic disorder affecting hundreds of millions of people worldwide. In this minireview, we summarize the latest evidence of the role these new regulators play in islet lineage development, aiming to attract more research into this important developmental regulators.







Physical description


1 - 7 - 2014
26 - 7 - 2014
28 - 11 - 2012
5 - 11 - 2012


  • Centre for Diabetes Research, Western Australian Institute for Medical Research, and Centre for Medical Research, The University of Western Australia, Perth 6000, Australia
  • Centre for Diabetes Research, Western Australian Institute for Medical Research, and Centre for Medical Research, The University of Western Australia, Perth 6000, Australia


  • [1] Leeb M, Wutz A (2012) Establishment of epigenetic patterns in development. Chromosoma 121: 251-262.[WoS]
  • [2] Pauli A, Rinn JL, Schier AF (2011) Non-coding RNAs as regulators of embryogenesis. Nat Rev Genet 12: 136-149.[PubMed][WoS][Crossref]
  • [3] Ivey KN, Srivastava D (2010) MicroRNAs as regulators of differentiation and cell fate decisions. Cell Stem Cell 7: 36-41.[PubMed][Crossref][WoS]
  • [4] Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136: 215-233.[WoS]
  • [5] Scully T (2012) Diabetes in numbers. Nature 485: S2-3.
  • [6] Lynn FC (2009) Meta-regulation: microRNA regulation of glucose and lipid metabolism. Trends Endocrinol Metab 20: 452-459.[Crossref][PubMed]
  • [7] Joglekar MV, Parekh VS, Hardikar AA (2007) New pancreas from old: microregulators of pancreas regeneration. Trends Endocrinol Metab 18: 393-400.[WoS][PubMed][Crossref]
  • [8] Fernandez-Valverde SL, Taft RJ, Mattick JS (2011) MicroRNAs in beta-cell biology, insulin resistance, diabetes and its complications. Diabetes 60: 1825-1831.[WoS]
  • [9] Kolfschoten IG, Roggli E, Nesca V, Regazzi R (2009) Role and therapeutic potential of microRNAs in diabetes. Diabetes Obes Metab 11 Suppl 4: 118-129.[PubMed][Crossref]
  • [10] Dumortier O, Van Obberghen E (2012) MicroRNAs in pancreas development. Diabetes Obes Metab 14 Suppl 3: 22-28.[WoS][Crossref][PubMed]
  • [11] Pictet RL, Clark WR, Williams RH, Rutter WJ (1972) An ultrastructural analysis of the developing embryonic pancreas. Dev Biol 29: 436-467.[Crossref][PubMed]
  • [12] Gu G, Dubauskaite J, Melton DA (2002) Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129: 2447-2457.
  • [13] Ohneda K, Mirmira RG, Wang J, Johnson JD, German MS (2000) The homeodomain of PDX-1 mediates multiple protein-protein interactions in the formation of a transcriptional activation complex on the insulin promoter. Mol Cell Biol 20: 900-911.[Crossref][PubMed]
  • [14] Gradwohl G, Dierich A, LeMeur M, Guillemot F (2000) neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci U S A 97: 1607-1611.
  • [15] Xu X, D’Hoker J, Stange G, Bonne S, De Leu N, et al. (2008) Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 132: 197-207.[WoS]
  • [16] Jiang FX, Morahan G (2012) Pancreatic stem cells: from possible to probable. Stem Cell Rev 8: 647-657.[PubMed][Crossref][WoS]
  • [17] Pan FC, Wright C (2011) Pancreas organogenesis: from bud to plexus to gland. Dev Dyn 240: 530-565.[WoS]
  • [18] Oliver-Krasinski JM, Stoffers DA (2008) On the origin of the beta cell. Genes Dev 22: 1998-2021.[Crossref]
  • [19] Gangaraju VK, Lin H (2009) MicroRNAs: key regulators of stem cells. Nat Rev Mol Cell Biol 10: 116-125.[Crossref][PubMed]
  • [20] Inui M, Martello G, Piccolo S (2010) MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 11: 252-263.[PubMed][WoS]
  • [21] Yi R, Fuchs E (2011) MicroRNAs and their roles in mammalian stem cells. J Cell Sci 124: 1775-1783.[Crossref][PubMed]
  • [22] Lynn FC, Skewes-Cox P, Kosaka Y, McManus MT, Harfe BD, et al. (2007) MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes 56: 2938-2945.[Crossref][PubMed]
  • [23] Miyatsuka T, Kosaka Y, Kim H, German MS (2011) Neurogenin3 inhibits proliferation in endocrine progenitors by inducing Cdkn1a. Proc Natl Acad Sci U S A 108: 185-190.
  • [24] Joglekar MV, Parekh VS, Mehta S, Bhonde RR, Hardikar AA (2007) MicroRNA profiling of developing and regenerating pancreas reveal post-transcriptional regulation of neurogenin3. Dev Biol 311: 603-612.[WoS]
  • [25] Joglekar MV, Joglekar VM, Hardikar AA (2009) Expression of islet-specific microRNAs during human pancreatic development. Gene Expr Patterns 9: 109-113.[Crossref][PubMed]
  • [26] Jeon J, Correa-Medina M, Ricordi C, Edlund H, Diez JA (2009) Endocrine cell clustering during human pancreas development. J Histochem Cytochem 57: 811-824.[Crossref][WoS][PubMed]
  • [27] Correa-Medina M, Bravo-Egana V, Rosero S, Ricordi C, Edlund H, et al. (2009) MicroRNA miR-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas. Gene Expr Patterns 9: 193-199.[WoS]
  • [28] Kalis M, Bolmeson C, Esguerra JL, Gupta S, Edlund A, et al. (2011) Beta-cell specific deletion of Dicer1 leads to defective insulin secretion and diabetes mellitus. PLoS One 6: e29166.[WoS]
  • [29] Melkman-Zehavi T, Oren R, Kredo-Russo S, Shapira T, Mandelbaum AD, et al. (2011) miRNAs control insulin content in pancreatic beta-cells via downregulation of transcriptional repressors. EMBO J 30: 835-845.[Crossref][WoS]
  • [30] Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, et al. (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432: 226-230.
  • [31] Hinton A, Afrikanova I, Wilson M, King CC, Maurer B, et al. (2010) A distinct microRNA signature for definitive endoderm derived from human embryonic stem cells. Stem Cells Dev 19: 797-807.[WoS][Crossref][PubMed]
  • [32] Poy MN, Hausser J, Trajkovski M, Braun M, Collins S, et al. (2009) miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci U S A 106: 5813-5818.
  • [33] Kloosterman WP, Lagendijk AK, Ketting RF, Moulton JD, Plasterk RH (2007) Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol 5: e203.[WoS]
  • [34] Nieto M, Hevia P, Garcia E, Klein D, Alvarez-Cubela S, et al. (2011) Anti sense miR-7 impairs insulin expression in developing pancreas and in cultured pancreatic buds. Cell Transplant.
  • [35] Kredo-Russo S, Ness A, Mandelbaum AD, Walker MD, Hornstein E (2012) Regulation of pancreatic microRNA-7 expression. Exp Diabetes Res 2012: 695214.
  • [36] Simion A, Laudadio I, Prevot PP, Raynaud P, Lemaigre FP, et al. (2010) MiR-495 and miR-218 regulate the expression of the Onecut transcription factors HNF-6 and OC-2. Biochem Biophys Res Commun 391: 293-298.
  • [37] Yang Y, Ding L, An Y, Zhang ZW, Lang Y, et al. (2012) MiR-18a regulates expression of the pancreatic transcription factor Ptf1a in pancreatic progenitor and acinar cells. FEBS Lett.[Crossref][WoS]
  • [38] Zhu H, Shyh-Chang N, Segre AV, Shinoda G, Shah SP, et al. (2011) The Lin28/let-7 axis regulates glucose metabolism. Cell 147: 81-94.
  • [39] Frost RJ, Olson EN (2011) Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs. Proc Natl Acad Sci U S A 108: 21075-21080.
  • [40] Joglekar MV, Patil D, Joglekar VM, Rao GV, Reddy DN, et al. (2009) The miR-30 family microRNAs confer epithelial phenotype to human pancreatic cells. Islets 1: 137-147.[WoS]
  • [41] Tang X, Muniappan L, Tang G, Ozcan S (2009) Identification of glucose-regulated miRNAs from pancreatic {beta} cells reveals a role for miR-30d in insulin transcription. RNA 15: 287-293.[Crossref][WoS]
  • [42] Zhao X, Mohan R, Ozcan S, Tang X (2012) MicroRNA-30d induces insulin transcription factor MafA and insulin production by targeting mitogen-activated protein 4 kinase 4 (MAP4K4) in pancreatic beta-cells. J Biol Chem 287: 31155-31164.[WoS]
  • [43] Prosser HM, Koike-Yusa H, Cooper JD, Law FC, Bradley A (2011) A resource of vectors and ES cells for targeted deletion of microRNAs in mice. Nat Biotechnol 29: 840-845. [PubMed][WoS][Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.