Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 1 | 1 |

Article title

Comparative evaluation of porous silica based
carriers for lipids and liquid drug formulations

Content

Title variants

Languages of publication

EN

Abstracts

EN
Conversion of liquid and semisolid lipids into
free flowing powders is an advantageous technique, as
the carriers display high surface area, strong adsorption
capacity, ease of processing, and ability to generate lipid
loaded free flowing powders which can be converted to
solid dosage forms like tablets and capsules. A combination
of density, adsorption capacity and desorption is
found to be of importance in the selection of the right
adsorbent. Adsorbents like magnesium aluminium silicates
(MAS), granulated fumed silica (GFS) and mesoporous
silica gel (MSG) were characterized by flow property
measurements, particle size, scanning electron microscopy
(SEM) and pore structure by mercury (Hg) intrusion
study. SEM results reveal adsorbent morphology,
whereas an intrusion-extrusion study reveal pore size distributions.
Tablets and capsules of oil loaded adsorbents
were prepared by conventional methods. Oil loaded adsorbents
were evaluated for the ability to convert oil into
powder, easy of processing into tablets and capsules, and
release of the loaded oil (Vitamin E) or active (Glyburide).
All adsorbents possess good flow property while MSG has
higher density than GFS and MAS. This helps to deliver
maximum active per unit volume. A wider pore size distribution
of MAS was observed in comparison to MSG and
GFS. MAS exhibited poor oil release from powder and its
formulations, whereas GFS demonstrated closely similar
release to MSG. Maximum 70% oil loaded MSG can be delivered
in tablet dosage form andMSG can deliver the highest
amount in limited volume capsules due to its high density.
Hence, lower density and poor oil release from MAS
limit its applications in solid oral drug delivery,while both
MSG and GFS proved to be suitable.

Publisher

Year

Volume

1

Issue

1

Physical description

Dates

online
30 - 12 - 2014

Contributors

  • Grace Davison Chemical
    India Pvt Ltd, Hyderabad, 500078, India
author
  • Grace Davison Chemical
    India Pvt Ltd, Hyderabad, 500078, India
author
  • Grace Davison Chemical
    India Pvt Ltd, Hyderabad, 500078, India
author
  • Grace GmbH & Co.KG, Worms, 67545,
    Germany
author
  • Grace GmbH & Co.KG, Worms, 67545,
    Germany
  • W.R. Grace & Co., Columbia, MD 21044, USA

References

  • [1] Agueros M., Ruiz-Gaton L., Vauthier C., Bouchemal K.,Espuelas S., Ponchel G., Irache J.M. 2009. Combinedhydroxypropyl-cyclodextrin and poly(anhydride) nanoparticlesimprove the oral permeability of Paclitaxel. Eur. J.Pharm. Sci. 38:405–413.[WoS][Crossref]
  • [2] Banna G.L., Collova E., Gebbia V., Lipari H., Giuffrida P., CavallaroS., et al. 2010. Anticancer oral therapy: Emerging relatedissues. Cancer Treat. Rev. 36:595–605.[Crossref]
  • [3] Tang B., Cheng G., Gu J.C., Xu C.H. 2008. Developmentof solid self-emulsifying drug delivery systems: preparationtechniques and dosage forms. Drug Discov. Today 13:606–612.[WoS][Crossref][PubMed]
  • [4] Xu W., Ling P., Zhang T. 2013. Polymeric Micelles, a PromisingDrug Delivery System to Enhance Bioavailability of PoorlyWater-Soluble Drugs. J. Drug. Deliv. 2013:340315.
  • [5] Wairkar S.M., Gaud R.S. 2013. Solid Dispersions: SolubilityEnhancement Technique for Poorly Soluble Drugs. Int. J. Res.Pharm. Biomed. Sci. 4 :847–854.
  • [6] Kubo H., Osawa T., Takashima K., Mizobe M. 1996. Enhancementof oral bioavailability and pharmacological effectof 1-(3,4-dimethoxyphenyl)-2,3-bis(methoxycarbonyl)-4-hydroxy-6,7,8- trimethoxynaphthalene (TA-7552), a new hypocholesterolemicagent, by micronization in co-ground mixturewith D-mannitol. Biol. Pharmacol. Bull. 19:741–747.
  • [7] Barzegar-Jalali M., Valizadeh H., Shadbad M.R.S., Adibkia K.,Mohammadi G., Farahani A., et al. 2010. Cogrinding as an approachto enhance dissolution rate of a poorly water-solubledrug (gliclazide). Powder Technol. 197:150–158.[WoS]
  • [8] Ruan L.P., Yu B.Y., Fu G.M., Zhu D.N. 2005. Improving the solubilityof ampelopsin by solid dispersions and inclusion complexes.J. Pharm. Biomed. Anal. 38:457–464.[Crossref]
  • [9] . Barzegar-Jalali M., Dastmalchi S. 2007. Kinetic analysis ofchlorpropamide dissolution from solid dispersions. Drug Dev.Ind. Pharm. 33: 63–70.[WoS]
  • [10] Pouton C.W. 2000. Lipid formulations for oral administrationof drugs: Nonemulsifying, self-emulsifying and selfmicroemulsifyingdrug delivery systems. Eur. J. Pharm. Sci.11:93–98.[Crossref]
  • [11] Van Speybroeck M., Williams H.D., Nguyen T.H., Anby M.U.,Porter C.J., Augustijns P. 2012. Incomplete desorption of liquidexcipients reduces the in vitro and in vivo performance ofself-emulsifying drug delivery systems solidified by adsorptiononto an inorganic mesoporous carrier. Mol. Pharmaceutics9:2750–2760.[Crossref][WoS]
  • [12] Date A.A., Desai N., Dixit R., Nagarsenker M. 2010. SelfnanoemulsifyingDrug Delivery Systems: Formulation Insights,Applications and Advances. Nanomedicine 5:1595–1616.[Crossref][WoS]
  • [13] Christiansen M.L., Kristensen R.H.J., Kreilgaard M., AbrahamssonJ.J.B., Müllertz A. 2014. Cinnarizine food-effects in beagledogs can be avoided by administration in a Self Nano EmulsifyingDrug Delivery System (SNEDDS) Eur. J. Pharm. Sci. 57:164–172[WoS]
  • [14] Marchaud D., Hughes S. 2008. Solid dosage forms from selfemulsifyinglipidic formulations. Pharm. Technol. Eur. 20:46–49.
  • [15] Tan A., Simovic S., Davey A.K., Rades T., Prestidge C.A. 2009.Prestidge Silica-lipid hybrid (SLH) microcapsules: A novel oraldelivery system for poorly soluble drugs. J. Control. Release134:62–70.[WoS]
  • [16] Pouton C.W., Porter C.J. 2008. Formulation of lipid-based deliverysystems for oral administration. Adv. Drug Deliv. Rev.60:625–637.
  • [17] Woo J.S., Song Y.K., Hong J.Y., Lim S.J., Kim C.K. 2008. Reducedfood-effect and enhanced bioavailability of a selfmicroemulsifyingformulation of itraconazole in healthy volunteers.Eur. J. Pharm. Sci. 33:159–165.[WoS][Crossref]
  • [18] Chakraborty S., Shukla D., Mishra B., Singh S. 2009. Lipid–anemerging platform for oral delivery of drugswith poor bioavailability.Eur. J. Pharm. Biopharm. 73:1–15.
  • [19] Hentzschel C.M., Sakmann A., Leopold C.S. 2011. Suitabilityof various excipients as carrier and coating materials forliquisolid compacts. Drug Dev. Ind. Pharm. 37:1200–1207.[WoS][Crossref]
  • [20] Qi X., Qin J., Ma N., Chou X., Wua Z. 2014. Solid self- microemulsifyingdispersible tablets of celastrol: Formulationdevelopment, charaterization and bioavailability evaluation.Int. J. Pharm. 472:40–47.[WoS]
  • [21] Kima D.W., Kwona M.S., Yousafa A.M., Balakrishnana P., ParkaJ.H., Kima D.S., et al. 2014. Comparison of a solid SMEDDSand solid dispersion for enhancedstability and bioavailabilityof clopidogrel napadisilate. Carbohydr. Polym. 114:365–374.[WoS]
  • [22] Hong T.D., Edgington S., Ellis R.H., de Muro M.A., Moore D.2005. Saturated salt solutions for humidity control and the survivalof dry powder and oil formulations of Beauveria bassianaconidia. J. Invertebr. Pathol. 89:136–143.
  • [23] Fu X., Huck D., Makein L., Armstrong B., Willen U., Freeman T.2012. Effect of particle shape and size on flow properties oflactose powders. Particuology 10:203–208.[Crossref][WoS]
  • [24] Šantl M., Ilić I., Vrečer F., Baumgartner S. 2012. A compressibilityand compactibility study of real tableting mixtures: theeffect of granule particle size. Acta Pharm. 62:325-340.[WoS]
  • [25] Wang H., Shadman F. 2012. The effect of particle size on theadsorption and desorption properties of porous oxide. AIChEJ. 59:1502–1510.[WoS]
  • [26] Qu F., Zhu G., Huang S., Li S., Sun J., Zhang D., Qiu S. 2006.Controlled release of Captopril by regulating the pore size andmorphology of ordered mesoporous silica. Micropor. Mesopor.Mat. 92:1–9.
  • [27] Mortera R., Fiorilli S., Garrone E., Vernéa E., Onida B. 2010.Pores occlusion in MCM-41 spheres immersed in SBF and theeffect on ibuprofen delivery kinetics: A quantitative model.Chem. Eng. J. 156:184–192.[WoS]
  • [28] Shena S.-C., NgaW.K., Chiaa L., Hua J., Tana R.B.H. 2011. Physicalstate and dissolution of ibuprofen formulated by co-spraydrying with mesoporous silica: Effect of pore and particle size.Int. J. Pharm. 410:188–195.[WoS]
  • [29] Horcajada P., Rámila A., Pérez-Pariente J., Vallet-Regi M., 2004.Influence of pore size of MCM-41 matrices on drug deliveryrate. Microporo. Mesopor. Mater. 1283 68, 105–109.
  • [30] Christophersen P.C., Christiansen M.L., Holm R., Kristensen J.,Jacobsen J., Abrahamsson B., Müllertz A. 2013. Fed and fastedstate gastro-intestinal in vitro lipolysis: In vitro in vivo relationsof a conventional tablet, a SNEDDS and a solidified SNEDDS.Eur. J. Pharm. 57:232–239[WoS]
  • [31] Kutza C., Metz H., Kutza J., Syrowatka F.,Mäder K. 2013. Towarda detailed characterization of oil adsorbates as “solid liquids”.Eur. J. Pharm. Biopharm. 84:172–182.[Crossref]
  • [32] Kang M.J., Jung S.Y., Song W.H., Park J.S., Choi S.U., Oh K.T.,et al. 2011. Immediate release of ibuprofen from Fujicalin® -based fast-dissolving self-emulsifying tablets. Drug. Dev. Ind.Pharm. 37:1298–1305.[WoS][Crossref]
  • [33] Horcajada P., Rámila A., Perez Pariente J., Vallet-Regi M. 2004.Influence of pore size of MCM-41 matrices on drug deliveryrate. Micropor. Mesopor. Mater. 68:105–109.
  • [34] Yang P., Quan Z., Lu L., Huang S., Lin J. 2008. Luminescencefunctionalization of mesoporous silica with differentmorphologies and applications as drug delivery systems. Biomaterials29:692–702.[WoS][Crossref]
  • [35] Li Y.J., Zhou G.W., Li C.J., Qin D.W., Qiao W.T., Chu B. 2009.Adsorption and catalytic activity of Porcine pancreatic lipaseon rod-like SBA-15 mesoporous material. Colloids Surf. A.341:79–85.
  • [36] XuW.J., Gao Q., Xu Y.,Wu D., Sun Y.H. 2009. pH-Controlled drugrelease from mesoporous silica tablets coated with hydroxypropylmethylcellulose phthalate. Mater. Res. Bull. 44:606–612.[WoS]
  • [37] Zhang Y., Zhi Z., Jiang T., Zhang J., Wang Z., Wang S. 2010.Spherical mesoporous silica nanoparticles for loading and releaseof the poorly water-soluble drug telmisartan. J. Control.Release 145:257–263.[WoS]
  • [38] Salonen J., Kaukonen A.M., Hirvonen J., Lehto V.P., 2008.Mesoporous silicon in drug delivery applications. J. Pharm.Sci. 97:632–653.[WoS]
  • [39] Kallakunta V.R., Bandari S., Jukanti R., Veerareddy P.R. 2012.Oral self emulsifying powder of lercanidipine hydrochloride:Formulation and evaluation. Powder Technol. 221:375–382.[WoS]
  • [40] Im-emsap W., Siepmann J. Disperse systems. In: Banker G.S.,Rhodes C.T., ed. Modern Pharmaceutics. Marcel Dekker Inc:New York, 2002:379–379
  • [41] Sherry Ku M., Li W., Dulin W., Donahue F., Cade D., BenameurH., Hutchison K. 2010. Performance qualification of a newhypromellose capsule – Part I. Comparative evaluation ofphysical, mechanical and processability quality attributes ofVcaps® Plus, Quali-V® and gelatin capsules. Int. J. Pharm. 386:30-41.[WoS]
  • [42] Ku M.S., Lu Q., Dulin W., Chen Y. 2011. Performance qualificationof a new hypromellose capsule – Part II. Disintegrationand dissolution comparison between two types of hypromellosecapsules. Int. J. Pharm. 416:16-24.[WoS]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_mesbi-2014-0004
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.