Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 1 | 1 |

Article title

Bubbles: A review of their relationship to the
formation of thin films and porous materials

Content

Title variants

Languages of publication

EN

Abstracts

EN
Bubbles arise at the intersection of gases with
other phases. Their role in the formation and applications
of thin films and porous materials is complex. At times
they are to be avoided. In other cases they are essential to
the desired properties and outcomes. In many cases their
function, form and production are misunderstood or disregarded.
This review seeks to connect a diverse array of
technical and fundamental aspects of bubbles so as to facilitate
more control and understanding of their functions
and utility

Publisher

Year

Volume

1

Issue

1

Physical description

Dates

online
29 - 12 - 2014

Contributors

  • Department of
    Chemistry, West Chester University, West Chester, PA 19383 USA,

References

  • [1] Liger-Belair G., Conreux A., Villaume S., Cilindre C., 2013.Monitoring the losses of dissolved carbon dioxide from laseretchedchampagne glasses. Food Res. Internat., 54, 516-522.[Crossref]
  • [2] Zhang B. L., Wang J., Li M., Hou Q., 2013. A molecular dynamicsstudy of helium bubble formation and gas release near titaniumsurfaces. J. Nucl. Mater., 438, 178–182.
  • [3] Mostowfi F., Molla S., Tabeling P., 2012. Determining phasediagrams of gas-liquid systems using a microfluidic PVT. LabChip, 12, 4381-4387.[Crossref][PubMed]
  • [4] Di Bari S., Robinson A. J., 2013. Experimental study of gas injectedbubble growth from submerged orifices. Exp. ThermalFluid Sci., 44, 124-137.
  • [5] Albadawi A., Donoghue D. B., Robinson A. J., Murray D. B., DelaureY. M. C., 2013. On the analysis of bubble growth and detachmentat low capillary and bond numbers using volume offluid and level set methods. Chem. Eng. Sci., 90, 77-91.[Crossref]
  • [6] Jones S. F., Evans G. M., Galvin, K. P., 1999. Bubble nucleationfrom gas cavities - a review. Adv. Colloid Interface Sci., 80, 27-50.[Crossref]
  • [7] Lubetkin S. D., 1989. The nucleation and detachment of bubbles.J. Chem. Soc., Faraday Trans., 85, 1753-1764.
  • [8] Lugli F., Zerbetto F., 2007. An introduction to bubble dynamics.Phys. Chem. Chem. Phys., 9, 2447-2456.[Crossref][PubMed]
  • [9] Bang J. H., Suslick K. S., 2010. Applications of ultrasound to thesynthesis of nanostructured materials Adv. Mater., 22, 1039-1059.
  • [10] Suslick K. S., Price G. J., 1999. Applications of ultrasound tomaterials chemistry. Annu. Rev. Mater. Sci., 29, 295-326.[Crossref]
  • [11] Xu H. X., Zeiger B. W., Suslick K. S., 2013. Sonochemical synthesisof nanomaterials. Chem. Soc. Rev., 42, 2555-2567.[PubMed][Crossref]
  • [12] Gedanken A., 2008. Preparation and properties of proteinaceousmicrospheres made sonochemically. Chemistry, 14, 3840-3853.[PubMed][Crossref]
  • [13] Skirtenko N., Tzanov T., Gedanken A., Rahimipour S., 2010.One-step preparation of multifunctional chitosan microspheresby a simple sonochemical method. Chemistry, 16,562-567.[Crossref]
  • [14] Gabashvili A., Major D. T., Perkas N., Gedanken A., 2010.The sonochemical synthesis and characterization of mesoporouschiral titania using a chiral inorganic precursor. Ultrason.Sonochem., 17, 605-609.[Crossref]
  • [15] Belova V., Borodina T., Mohwald H., Shchukin D. G., 2011.The effect of high intensity ultrasound on the loading of Aunanoparticles into titanium dioxide. Ultrason. Sonochem., 18,310-317.[Crossref][PubMed]
  • [16] Okorn-Schmidt H. F., Holsteyns F., Lippert A., Mui D.,Kawaguchi M., Lechner C., Frommhold P. E., Nowak T.,Reuter F., Pique M. B., Cairos C., Mettind R., 2014. Particlecleaning technologies to meet advanced semiconductordevice process requirements. ECS J. Solid State Sci. Technol.,3, N3069-N3080.
  • [17] Hernot S., Klibanov A. L., 2008. Microbubbles in ultrasoundtriggereddrug and gene delivery. Adv. Drug Deliv. Rev., 60,1153-1166.[Crossref]
  • [18] Dapkus K. V., Sides P. J., 1986. Nucleation of electrolyticallyevolved hydrogen at an ideally smooth electrode. J. Colloid InterfaceSci., 111, 133-151.[Crossref]
  • [19] Huang W. J., Manjare M., Zhao Y. P., 2013. Catalytic nanoshellmicromotors. J. Phys. Chem. C, 117, 21590-21596.
  • [20] Manesh K. M., Cardona M., Yuan R., Clark M., Kagan D., BalasubramanianS., Wang J., 2010. Template-assisted fabricationof salt-independent catalytic tubular microengines. ACS Nano,4, 1799-1804.[Crossref]
  • [21] Hornberger H., Virtanen S., Boccaccini A. R., 2012. Biomedicalcoatings on magnesium alloys - A review. Acta Biomater., 8,2442-2455.[Crossref]
  • [22] Kim Y. K., Park I. S., Lee S. J., Lee, M. H., 2013. Biodegradationand cytotoxic properties of pulse anodizedMgalloys. Met.Mater. Int., 19, 353-360.[Crossref]
  • [23] Virtanen S., 2011. Biodegradable Mg and Mg alloys: Corrosionand biocompatibility. Mater. Sci. Eng. B, 176, 1600-1608.
  • [24] Killian M. S., Wagener V., Schmuki P., Virtanen S., 2010. Functionalizationof metallic magnesium with protein layers vialinker molecules. Langmuir, 26, 12044-12048.[Crossref]
  • [25] Wagener V., Killian M. S., Turhan C. M., Virtanen S., 2013. Albumincoating on magnesium via linker molecules-Comparingdifferent coating mechanisms. Colloids Surf. B, 103, 586-594.
  • [26] Aghion E., Levy G., Ovadia S., 2012. In vivo behavior ofbiodegradable Mg-Nd-Y-Zr-Ca alloy. J. Mater. Sci. Mater. Med.,23, 805-812.[Crossref]
  • [27] Staiger M. P., Pietak A. M., Huadmai J., Dias G., 2006. Magnesiumand its alloys as orthopedic biomaterials: A review. Biomaterials,27, 1728-1734.[Crossref]
  • [28] Shafer N. E., Zare R. N., 1991. Through a beer glass darkly. Phys.Today, 44, 48-52.[Crossref]
  • [29] Shafer N. E., Zare R. N., 1992. Ferment over beer bubbles - reply.Phys. Today, 45, 112.
  • [30] Volmer M., 1929. Über Keimbildung und Keimwirkung alsspezialfälle der heterogenen Katalyse. Z. Elektrochem., 35,555-561.
  • [31] Fletcher N. H., 1958. Size Effect in heterogeneous nucleation.J. Chem. Phys., 29, 572-576.
  • [32] Qian M., Ma J., 2009. Heterogeneous nucleation on convexspherical substrate surfaces: A rigorous thermodynamic formulationof Fletcher’s classical model and the new perspectivesderived. J. Chem. Phys., 130, 214709.
  • [33] Adamson A. W., Gast A. P., 1997. Physical Chemistry of Surfaces,New York, John Wiley & Sons.
  • [34] Metiu H., 2006. Physical Chemistry: Thermodynamics, NewYork, Taylor, Francis.
  • [35] Nagashima G., Levine E. V., Hoogerheide D. P., Burns M. M.,Golovchenko J. A., 2014. Superheating and homogeneous singlebubble nucleation in a solid-state nanopore. Phys. Rev.Lett., 113, 024506.[Crossref]
  • [36] Liger-Belair G., 2012. The physics behind the fizz in champagneand sparkling wines. Euro. Phy. J.-Special Topics, 201,1-88.
  • [37] Liger-Belair G., Polidori G., Jeandet P., 2008. Recent advancesin the science of champagne bubbles. Chem. Soc. Rev., 37,2490-2511.[Crossref]
  • [38] Lesage F. J., Cotton J. S., Robinson A. J., 2013. Analysis ofquasi-static vapour bubble shape during growth and departure.Phys. Fluids, 25, 067103.[Crossref]
  • [39] Amouzgar M., Kahrizi M., 2012. A new approach for improvingthe silicon texturing process using gas-lift effect. J. Phys. D:Appl. Phys., 45, 105102.[Crossref]
  • [40] Xie X. Z., Hu M. F., ChenW. F., Wei X., HuW.,Gao X. Y., Yuan X. R.,Hong M. H., 2013. bubble dynamics during laser wet etching oftransparent sapphire substrates by 1064 nm laser irradiation.J. Laser Micro Nanoeng., 8, 259-265.
  • [41] Vu Q.-B., Stricker D. A., Zavracky P. M., 1996. Surface characteristicsof (100) silicon anisotropically etched in aqueous KOH. J.Electrochem. Soc., 143, 1372-1375.
  • [42] Zubel I., Kramkowska M., 2001. The effect of isopropyl alcoholon etching rate and roughness of (100) Si surface etchedin KOH and TMAH solutions. Sens. Actuators A, 93, 138-147.
  • [43] Zubel I., Kramkowska M., 2002. The effect of alcohol additiveson etching characteristics in KOH solutions. Sens. Actuators A,101, 255-261.
  • [44] Yang C.-R., Yang C.-H., Chen P.-Y., 2005. Study on anisotropicsilicon etching characteristics in various surfactant-addedtetramethyl ammonium hydroxide water solutions. J. Micromech.Microeng., 15, 2028-2037.[Crossref]
  • [45] Aldinger B. S., Gupta A., Clark I. T., Hines M. A., 2010. The sameetchant produces both near-atomically flat and microfacetedSi(100) surfaces: The effects of gas evolution on etch morphology.J. Appl. Phys., 107, 103520.
  • [46] Clark I. T., Aldinger B. S., Gupta A., Hines M. A., 2010. Aqueousetching produces Si(100) surfaces of near-atomic flatness:Strain minimization does not predict surface morphology. J.Phys. Chem. C, 114, 423-428.[Crossref]
  • [47] Hines M. A., Faggin M. F., Gupta A., Aldinger B. S., Bao K., 2012.Self-propagating reaction produces near-ideal functionalizationof Si(100) and flat surfaces. J. Phys. Chem. C, 116, 18920-18929.
  • [48] Pauric A. D., Baig S. A., Pantaleo A. N.,Wang Y., Kruse P., 2013.Sponge-like porous metal surfaces from anodization in veryconcentrated acids. J. Electrochem. Soc., 160, C12-C18.
  • [49] Moutanabbir O., Gösele U., 2010. Heterogeneous integrationof compound semiconductors. Annu. Rev. Mater. Res., 40,469-500.[Crossref]
  • [50] De La Rosa C. J. L., Sun J., Lindvall N., Cole M. T., Nam Y., LofflerM., Olsson E., Teo K. B. K., Yurgens A., 2013. Frame assistedH2O electrolysis induced H2 bubbling transfer of large areagraphene grown by chemical vapor deposition on Cu. Appl.Phys. Lett., 102, 022101.
  • [51] Gao L., Ren W., Xu H., Jin L., Wang Z., Ma T., Ma L.-P., Zhang Z.,Fu Q., Peng L.-M., Bao X., Cheng H.-U., 2012. Repeated growthand bubbling transfer of graphene with millimetre-size singlecrystalgrains using platinum. Nat. Commun., 3, 699.[Crossref]
  • [52] Gao L. B., Ni G. X., Liu Y. P., Liu B., Neto A. H. C., Loh K. P.,2014. Face-to-face transfer of wafer-scale graphene films. Nature(London), 505, 190-194.
  • [53] Chevalier E., Chulia D., Pouget C., Viana M., 2008. Fabricationof porous substrates: A review of processes using pore formingagents in the biomaterial field. J. Pharm. Sci., 97, 1135-1154.[Crossref]
  • [54] Shang J. T., Chen B. Y., Lin W., Wong C. P., Zhang D., Xu C., LiuJ. W., Huang Q. A., 2011. Preparation of wafer-level glass cavitiesby a low-cost chemical foaming process (CFP). Lab Chip,11, 1532-1540.[Crossref]
  • [55] Bobo B., Phelan D., Rebhahn J., Piepenbrink M. S., Zheng B.,Mosmann T. R., Kobie J. J., Delouise L. A., 2014. Microbubblearray diffusion assay for the detection of cell secreted factors.Lab on a Chip, 14, 3640-3650.
  • [56] Giang U. B. T., Jones M. C., Kaule M. J., Virgile C. R., Pu Q. H., DelouiseL. A., 2014. Quantitative analysis of spherical microbubblecavity array formation in thermally cured polydimethylsiloxanefor use in cell sorting applications. Biomed. Microdevices,16, 55-67.[Crossref]
  • [57] Giang U. B. T., Lee D., King M. R., Delouise L. A., 2007. Microfabricationof cavities in polydimethylsiloxane using DRIE siliconmolds. Lab Chip, 7, 1660-1662.[Crossref]
  • [58] Fallah-Araghi A., Meguellati K., Baret J. C., El Harrak A.,Mangeat T., Karplus M., Ladame S., Marques C. M., GriflthsA. D., 2014. Enhanced chemical synthesis at soft interfaces:A universal reaction-adsorption mechanism in microcompartments.Phys. Rev. Lett., 112, 028301.[Crossref]
  • [59] Chen I. A., Nowak M. A., 2012. From Prelife to Life: How ChemicalKinetics Become Evolutionary Dynamics. Acc. Chem. Res.,45, 2088-2096.[Crossref]
  • [60] Narayan S., Muldoon J., Finn M. G., Fokin V. V., Kolb H. C.,Sharpless K. B., 2005. “On water”: Unique reactivity of organiccompounds in aqueous suspension Angew. Chem., Int.Ed. Engl., 44, 3275–3279.
  • [61] Cordes E. H., 2009. Kinetics of organic reactions in micelles.Pure Appl. Chem., 50, 617–625.
  • [62] Dwars T., Paetzold E., Oehme G., 2005. Reactions in MicellarSystems. Angew. Chem., Int. Ed. Engl., 44, 7174–7199.[Crossref]
  • [63] Karimi M., Heuchel M., Weigel T., Schossig M., Hofmann D.,Lendlein A., 2012. Formation and size distribution of poresin poly(epsilon-caprolactone) foams prepared by pressurequenching using supercritical CO2. J. Supercrit. Fluid., 61, 175-190.
  • [64] Shafi M. A., Joshi K., Flumerfelt R. W., 1997. Bubble size distributionsin freely expanded polymer foams. Chem. Eng. Sci.,52, 635-644.[Crossref]
  • [65] Chen Y., Zhang S., Li J., Song Y., Zhao C., Zhang X., 2010. Dynamicdegradation behavior ofMgZn alloy in circulating m-SBF.Mater. Lett., 64, 1996-1999.[Crossref]
  • [66] Degner J., Singer F., Cordero L., Boccaccini A. R., Virtanen S.,2013. Electrochemical investigations of magnesium in DMEMwith biodegradable polycaprolactone coating as corrosionbarrier. Appl. Surf. Sci., 282, 264-270.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_mesbi-2014-0003
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.