Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2014 | 1 | 1 |

Article title

Celecoxib confinement within mesoporous silicon for enhanced oral bioavailability


Title variants

Languages of publication



We investigate the physicochemical characteristics of celecoxib (CEL) entrapped within particles of an oxidized porous silicon matrix (pSiox); determine the oral dose response of CEL compared to pure drug and innovator formulation; develop in vivo-in vitro correlation (IVIVC). CEL was loaded into a pSiox matrix by solvent partitioning, with the physical state of the CEL characterized by FTIR, DSC, TGA and XRD, and correlated with in vitro dissolution behavior. Single dose pharmacokinetic parameters of orally dosed CEL were determined in fasted rats for aqueous suspensions of pure CEL, Celebrexr and CEL-pSiox microparticles. Physicochemical testing of CEL-pSiox formulation confirmed the entrapment of CEL within porous nanostructure in an amorphous or non-crystalline form. CEL-pSiox demonstrated superior pharmacokinetics compared with CEL particles or Celebrexr, i.e. increased absolute bioavailability (96.2% vs. 65.2% vs. 88.1%), increased Cmax (0.91 ± 0.09 μg/mL vs. 0.50 ± 0.16 μg/mL vs. 0.73 ± 0.23 μg/mL) and reduced Tmax (1.0 ± 0.0 h vs. 2.8 ± 0.8 h vs. 3.4 ± 1.0 h). Single point correlation was established between in vitro dissolution efficiency (% DE) and in vivo absolute bioavailability or Cmax . Porous silicon microparticles can be formulated as an effective orally dosed solid dispersion preparation for celecoxib







Physical description


1 - 1 - 2014
15 - 10 - 2013


  • Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
  • Sansom Institute, School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
  • Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095, Australia


  • [1] E. Tindall, Celecoxib for the treatment of pain and inflammation: the preclinical and clinical results, JAOA: Journal of the American Osteopathic Association, 99 (1999) 13S.
  • [2] S. Paulson, M. Vaughn, S. Jessen, Y. Lawal, C. Gresk, B. Yan, T. Maziasz, C. Cook, A. Karim, Pharmacokinetics of celecoxib after oral administration in dogs and humans: effect of food and site of absorption, Journal of Pharmacology and Experimental Therapeutics, 297 (2001) 638-645.
  • [3] M. Yazdanian, K. Briggs, C. Jankovsky, A. Hawi, The “High Solubility” Definition of the Current FDA Guidance on Biopharmaceutical Classification System May Be Too Strict for Acidic Drugs, Pharmaceutical Research, 21 (2004) 293-299.[Crossref]
  • [4] G. Chawla, P. Gupta, R. Thilagavathi, A. K. Chakraborti, A. K. Bansal, Characterization of solid-state forms of celecoxib, European Journal of Pharmaceutical Sciences, 20 (2003) 305-317.[Crossref]
  • [5] G. L. Amidon, H. Lennernäs, V. P. Shah, J. R. Crison, A Theoretical Basis for a Biopharmaceutic Drug Classification: The Correlation of in Vitro Drug Product Dissolution and in Vivo Bioavailability, Pharmaceutical Research, 12 (1995) 413-420.[Crossref]
  • [6] C. Charnay, S. Begu, C. Tourne-Peteilh, L. Nicole, D. A. Lerner, J. M. Devoisselle, Inclusion of ibuprofen in mesoporous templated silica: drug loading and release property, Eur. J. Pharm. Biopharm., 57 (2004) 533.[Crossref]
  • [7] V. R. Sinha, R. Anitha, S. Ghosh, A. Nanda, R. Kumria, Complexation of celecoxib with _-cyclodextrin: Characterization of the interaction in solution and in solid state, Journal of Pharmaceutical Sciences, 94 (2005) 676-687.[Crossref]
  • [8] B. Cappello, C. di Maio, M. Iervolino, A. Miro, Combined effect of hydroxypropyl methylcellulose and hydroxypropyl-_-cyclodextrin on physicochemical and dissolution properties of celecoxib, Journal of Inclusion Phenomena and Macrocyclic Chemistry, 59 (2007) 237-244.[Crossref]
  • [9] N. Garti, M. Avrahami, A. Aserin, Improved solubilization of Celecoxib in U-type nonionic microemulsions and their structural transitions with progressive aqueous dilution, Journal of Colloid and Interface Science, 299 (2006) 352-365.
  • [10] N. Subramanian, S. Ray, S. K. Ghosal, R. Bhadra, S. P. Moulik, Formulation Design of Self- Microemulsifying Drug Delivery Systems for Improved Oral Bioavailability of Celecoxib, Biological and Pharmaceutical Bulletin, 27 (2004) 1993-1999.
  • [11] A. Tan, S. Simovic, A. K. Davey, T. Rades, C. A. Prestidge, Silica-lipid hybrid (SLH) microcapsules: A novel oral delivery system for poorly soluble drugs, Journal of Controlled Release, 134 (2009) 62-70.
  • [12] A. P. Mann, T. Tanaka, A. Somasunderam, X. Liu, D. G. Gorenstein, M. Ferrari, E-Selectin-Targeted Porous Silicon Particle for Nanoparticle Delivery to the Bone Marrow, Adv. Mater. (Weinheim, Ger.), 23 (2011) H278.
  • [13] A. Tan, A. Martin, T. H. Nguyen, B. J. Boyd, C. A. Prestidge, Hybrid Nanomaterials that Mimic the Food Effect: Controlling Enzymatic Digestion for Enhanced Oral Drug Absorption, Angewandte Chemie, 124 (2012) 5571-5575.[Crossref]
  • [14] T. H. Nguyen, A. Tan, L. Santos, D. Ngo, G. A. Edwards, C. J. H. Porter, C. A. Prestidge, B. J. Boyd, Silica-Lipid Hybrid (SLH) formulations enhance the oral bioavailability and efficacy of celecoxib: an invivo evaluation, Journal of Controlled Release, 167 (2013) 85-91.
  • [15] A. Paradkar, M. Maheshwari, R. Kamble, I. Grimsey, P. York, Design and Evaluation of Celecoxib Porous Particles using Melt Sonocrystallization, Pharmaceutical Research, 23 (2006) 1395-1400.[Crossref]
  • [16] A. T. M. Serajuddin, Solid dispersion of poorly watersoluble drugs: Early promises, subsequent problems, and recent breakthroughs, Journal of Pharmaceutical Sciences, 88 (1999) 1058-1066.[Crossref]
  • [17] V. K. Kakumanu, A. K. Bansal, Enthalpy Relaxation Studies of Celecoxib Amorphous Mixtures, Pharmaceutical Research, 19 (2002) 1873-1878.[Crossref]
  • [18] P. Gupta, V. K. Kakumanu, A. K. Bansal, Stability and Solubility of Celecoxib-PVP Amorphous Dispersions: A Molecular Perspective, Pharmaceutical Research, 21 (2004) 1762-1769.[Crossref]
  • [19] M. Vallet-Regi, A. Ramila, R. P. del Real, J. Perez- Pariente, A New Property of MCM-41: Drug Delivery System, Chem. Mater., 13 (2001) 308.[Crossref]
  • [20] F. Wang, H. Hui, T. J. Barnes, C. Barnett, C. A. Prestidge, Oxidized mesoporous silicon microparticles for improved oral delivery of poorly soluble drugs, Molecular Pharmaceutics, 7 (2010) 227-236.[Crossref]
  • [21] P. Zhao, H. Jiang, T. Jiang, Z. Zhi, C. Wu, C. Sun, J. Zhang, S. Wang, Inclusion of celecoxib into fibrous ordered mesoporous carbon for enhanced oral bioavailability and reduced gastric irritancy, European Journal of Pharmaceutical Sciences, 45 (2012) 639-647.[Crossref]
  • [22] C. A. Prestidge, T. J. Barnes, C. H. Lau, C. Barnett, A. Loni, L. Canham, Mesoporous silicon: A platform for the delivery of therapeutics, Expert Opinion on Drug Delivery, 4 (2007) 101-110. [23] T. J. Barnes, K. L. Jarvis, C. A. Prestidge, Recent advances in porous silicon technology for drug delivery, Therapeutic Delivery, 4 (2013) 811-823.[Crossref]
  • [24] H. Foll, M. Christophersen, J. Carstensen, G. Hasse, Formation and application of porous silicon, Mater. Sci. Eng., R, 39 (2002) 93.[Crossref]
  • [25] L. T. Canham, Bioactive silicon structure fabrication through nanoetching techniques, Adv. Mater. (Weinheim, Ger.), 7 (1995) 1033.
  • [26] S. P. Low, N. H. Voelcker, L. T. Canham, K. A. Williams, The biocompatibility of porous silicon in tissues of the eye, Biomaterials, 30 (2009) 2873.[Crossref]
  • [27] A. E. Pap, K. Kordas, G. Toth, J. Levoska, A. Uusimaki, J. Vahakangas, S. Leppavuori, T. F. George, Thermal oxidation of porous silicon: Study on structure, Appl. Phys. Lett., 86 (2005) 041501.[Crossref]
  • [28] K. L. Jarvis, T. J. Barnes, C. A. Prestidge, Aqueous and Thermal Oxidation of Porous Silicon Microparticles: Implications on Molecular Interactions, Langmuir, 24 (2008) 14222-14226.[Crossref]
  • [29] K. L. Jarvis, T. J. Barnes, A. Badalyan, P. Pendleton, C. A. Prestidge, Impact of thermal oxidation on the adsorptive properties and structure of porous silicon particles, Journal of Physical Chemistry C, 112 (2008) 9717-9722.[Crossref]
  • [30] V. P. Lehto, K. Vähä-Heikkilä, J. Paski, J. Salonen, Use of thermoanalytical methods in quantification of drug load in mesoporous silicon microparticles, Journal of Thermal Analysis and Calorimetry, 80 (2005) 393-397.[Crossref]
  • [31] J. Salonen, J. Tuura, M. Bjorkqvist, V. P. Lehto, Subppm trace moisture detection with a simple thermally carbonized porous silicon sensor, Sens. Actuators, B, 114 (2006) 423.
  • [32] T. Böcking, K. A. Kilian, P. J. Reece, K. Gaus, M. Gal, J. J. Gooding, Biofunctionalization of free-standing porous silicon films for self-assembly of photonic devices, Soft Matter, 8 (2012) 360-366.[Crossref]
  • [33] L. Britcher, T. J. Barnes, H. J. Griesser, C. A. Prestidge, PEGylation of Porous Silicon Using Click Chemistry, Langmuir, 24 (2008) 7625.[Crossref]
  • [34] J. Salonen, L. Laitinen, A. M. Kaukonen, J. Tuura, M. Björkqvist, T. Heikkilä, K. Vähä-Heikkilä, J. Hirvonen, V. P. Lehto, Mesoporous silicon microparticles for oral drug delivery: Loading and release of five model drugs, Journal of Controlled Release, 108 (2005) 362-374.[Crossref]
  • [35] A. M. Kaukonen, L. Laitinen, J. Salonen, J. Tuura, T. Heikkila, T. Limnell, J. Hirvonen, V. P. Lehto, Enhanced in vitro permeation of furosemide loaded into thermally carbonized mesoporous silicon (TCPSi) microparticles, Eur. J. Pharm. Biopharm., 66 (2007) 348.[Crossref]
  • [36] C. A. Prestidge, T. J. Barnes, A. Mierczynska-Vasilev, I. Kempson, F. Peddie, C. Barnett, Peptide and protein loading into porous silicon wafers, Phys. Status Solidi A, 205 (2008) 311.
  • [37] C. A. Prestidge, T. J. Barnes, A. Mierczynska-Vasilev, W. Skinner, F. Peddie, C. Barnett, Loading and release of a model protein from porous silicon powders, Phys. Status Solidi A, 204 (2007) 3361.
  • [38] K. L. Jarvis, T. J. Barnes, C. A. Prestidge, Thermal Oxidation for Controlling Protein Interactions with Porous Silicon, Langmuir, 26 (2010) 14316-14322.[Crossref]
  • [39] E. Pastor, E. Matveeva, A. Valle-Gallego, F. M. Goycoolea, M. Garcia-Fuentes, Protein delivery based on uncoated and chitosan-coated mesoporous silicon microparticles, Colloids and Surfaces B-Biointerfaces, 88 (2011) 601-609.[Crossref]
  • [40] M. Kilpeläinen, J. Mönkäre, M. A. Vlasova, J. Riikonen, V. P. Lehto, J. Salonen, K. Järvinen, K. H. Herzig, Nanostructured porous silicon microparticles enable sustained peptide (Melanotan II) delivery, European Journal of Pharmaceutics and Biopharmaceutics, 77 (2011) 20-25.[Crossref]
  • [41] M. Kilpelainen, J. Riikonen, M. A. Vlasova, A. Huotari, V. P. Lehto, J. Salonen, K. H. Herzig, K. Jarvinen, In vivo delivery of a peptide, ghrelin antagonist, with mesoporous silicon microparticles, Journal of Controlled Release, 137 (2009) 166-170.
  • [42] M. Kovalainen, J. Monkare, E. Makila, J. Salonen, V. P. Lehto, K. H. Herzig, K. Jarvinen, Mesoporous Silicon (PSi) for Sustained Peptide Delivery: Effect of PSi Microparticle Surface Chemistry on Peptide YY3-36 Release, Pharmaceutical Research, 29 (2012) 837-846.[Crossref]
  • [43] L. Vaccari, D. Canton, N. Zaffaroni, R. Villa, M. Tormen, E. di Fabrizio, Porous silicon as drug carrier for controlled delivery of doxorubicin anticancer agent, Microelectron. Eng., 83 (2006) 1598.
  • [44] B. Chen, J. Wei, F. Tay, Y. Wong, C. Iliescu, Silicon microneedle array with biodegradable tips for transdermal drug delivery, Microsystem Technologies, 14 (2008) 1015-1019.[Crossref]
  • [45] K. Zhang, S. L. E. Loong, S. Connor, S. W. K. Yu, S. Y. Tan, R. T. H. Ng, K. M. Lee, L. Canham, P. K. H. Chow, Complete Tumor Response Following Intratumoral 32P BioSilicon on Human Hepatocellular and Pancreatic Carcinoma Xenografts in Nude Mice, Clin Cancer Res, 11 (2005) 7532.
  • [46] W. Y. Leong, A. Loni, L. T. Canham, Electrically enhanced erosion of porous Si material in electrolyte by pH modulation and its application in chronotherapy, physica status solidi (a), 204 (2007) 1486-1490.
  • [47] V. Andronis, G. Zografi, Crystal nucleation and growth of indomethacin polymorphs from the amorphous state, J. Non-Cryst. Solids, 271 (2000) 236.
  • [48] H. G. Brittain, Spectral methods for the characterization of polymorphs and solvates, Journal of Pharmaceutical Sciences, 86 (1997) 405-412.[Crossref]
  • [49] A. M. Kaushal, A. K. Chakraborti, A. K. Bansal, FTIR Studies on Differential Intermolecular Association in Crystalline and Amorphous States of Structurally Related Non-Steroidal Anti-Inflammatory Drugs, Molecular Pharmaceutics, 5 (2008) 937-945.[Crossref]
  • [50] D. B. Mawhinney, J. A. Glass, J. T. Yates, FTIR Study of the Oxidation of Porous Silicon, J. Phys. Chem. B, 101 (1997) 1202.[Crossref]
  • [51] A. Newman, D. Engers, S. Bates, I. Ivanisevic, R. C. Kelly, G. Zografi, Characterization of amorphous API:Polymer mixtures using X-ray powder diffraction, Journal of Pharmaceutical Sciences, 97 (2008) 4840-4856.[Crossref]
  • [52] G. Steele, T. Austin, Preformulation predictions from small amount of compound as an aid to candidate drug selection, in: M. Gibson (Ed.) Pharmaceutical preformulation and formulation-A practical guide from candidate drug selection to commercial dosage form, CRC Press, New York, 2001, pp. 17-128.
  • [53] Y. H. Ogata, N. Yoshimi, R. Yasuda, T. Tsuboi, T. Sakka, A. Otsuki, Structural change in p-type porous silicon by thermal annealing, Journal of Applied Physics, 90 (2001) 6487-6492.[Crossref]
  • [54] C. Kowalchuk, J. F. Corrigan, Y. Huang, Preparation, characterization and condensation of novel metal chalcogenide/MCM-41 complexes, Chemical Communications, (2000) 1811-1812.[Crossref]
  • [55] V. Ambrogi, L. Perioli, F. Marmottini, C. Rossi, Use of calcined Mg-Al-hydrotalcite to enhance the stability of celecoxib in the amorphous form, European Journal of Pharmaceutics and Biopharmaceutics, 66 (2007) 253-259.[Crossref]
  • [56] S. Paulson, J. Zhang, A. Breau, J. Hribar, N. Liu, S. Jessen, Y. Lawal, J. Cogburn, C. Gresk, C. Markos, T. Maziasz, G. Schoenhard, E. Burton, Pharmacokinetics, tissue distribution, metabolism, and excretion of celecoxib in rats, Drug Metabolism and Disposition, 28 (2000) 514-521.
  • [57] C. G. Wu, T. Bein, Conducting Polyaniline Filaments in a Mesoporous Channel Host, Science, 264 (1994) 1757-1759.
  • [58] T. Takei, T. Konishi, M. Fuji, T. Watanabe, M. Chikazawa, Phase transition of capillary condensed liquids in porous silica: effect of surface hydroxyl groups, Thermochimica Acta, 267 (1995) 159-167.
  • [59] T. Azads, C. Tourné-Péteilh, F. Aussenac, N. Baccile, C. Coelho, J. M. Devoisselle, F. Babonneau, Solid- State NMR Study of Ibuprofen Confined in MCM-41 Material, Chemistry of Materials, 18 (2006) 6382-6390.
  • [60] A. Dokoumetzidis, P. Macheras, A century of dissolution research: From Noyes and Whitney to the Biopharmaceutics Classification System, International Journal of Pharmaceutics, 321 (2006) 1-11.
  • [61] B. C. Hancock, M. Parks, What is the True Solubility Advantage for Amorphous Pharmaceuticals?, Pharm. Res., 17 (2000) 397.
  • [62] K. L. Jarvis, T. J. Barnes, C. A. Prestidge, Surface chemistry of porous silicon and implications for drug encapsulation and delivery applications, Advances in Colloid and Interface Science, 175 (2012) 25-38.
  • [63] F. Babonneau, L. Yeung, N. Steunou, C. Gervais, A. Ramila, M. Vallet-Regi, Solid State NMR Characterisation of Encapsulated Molecules in Mesoporous Silica, Journal of Sol-Gel Science and Technology, 31 (2004) 219-223.[Crossref]
  • [64] S. Chandran, P. Ravi, R. Saha, Development and in vitro evaluation of oral controlled release formulations of celecoxib using optimization techniques, Yakugaku Zasshi, 126 (2006) 505-514.[Crossref]
  • [65] USP, The United States Pharmacopeia USP 30, 30th ed., The United States Pharmacopeial Convention, 2007.
  • [66] NF, The National Formulary NF25, 25th ed., The United States Pharmacopeial Convention, 2007.
  • [67] J. B. Dressman, G. L. Amidon, C. Reppas, V. P. Shah, Dissolution Testing as a Prognostic Tool for Oral Drug Absorption: Immediate Release Dosage Forms, Pharmaceutical Research, 15 (1998) 11-22.[Crossref]
  • [68] R. Schmuhl, A. van den Berg, D. H. A. Blank, J. E. ten Elshof, Surfactant-Modulated Switching of Molecular Transport in Nanometer-Sized Pores of Membrane Gates, Angewandte Chemie International Edition, 45 (2006) 3341-3345.[Crossref]
  • [69] P. Costa, J. M. Sousa Lobo, Modeling and comparison of dissolution profiles, European Journal of Pharmaceutical Sciences, 13 (2001) 123-133.[Crossref]
  • [70] A. B. Foraker, R. J. Walczak, M. H. Cohen, T. A. Boiarski, C. F. Grove, P. W. Swaan, Microfabricated Porous Silicon Particles Enhance Paracellular Delivery of Insulin Across Intestinal Caco-2 Cell Monolayers, Pharm. Res., 20 (2003) 110.
  • [71] L. M. Bimbo, E. Mäkilä, T. Laaksonen, V. P. Lehto, J. Salonen, J. Hirvonen, H. A. Santos, Drug permeation across intestinal epithelial cells using porous silicon nanoparticles, Biomaterials, 32 (2011) 2625-2633.[Crossref]
  • [72] R. Mellaerts, R. Mols, P. Kayaert, P. Annaert, J. Van Humbeeck, G. Van den Mooter, J. A. Martens, P. Augustijns, Ordered mesoporous silica induces pHindependent supersaturation of the basic low solubility compound itraconazole resulting in enhanced transepithelial transport, Int. J. Pharm., 357 (2008) 169.
  • [73] K. A. Khan, The concept of dissolution efficiency, Journal of Pharmacy and Pharmacology, 27 (1975) 48-49.[Crossref]
  • [74] J. G. Wagner, E. Nelson, Kinetic analysis of blood levels and urinary excretion in the absorptive phase after single doses of drug, Journal of Pharmaceutical Sciences, 53 (1964) 1392-1403.[Crossref]
  • [75] E. Scott Swenson, W. J. Curatolo, (C) Means to enhance penetration: (2) Intestinal permeability enhancement for proteins, peptides and other polar drugs: mechanisms and potential toxicity, Advanced Drug Delivery Reviews, 8 (1992) 39-92.[Crossref]
  • [76] E. Nicolaides, E. Galia, C. Efthymiopoulos, J. B. Dressman, C. Reppas, Forecasting the In Vivo Performance of Four Low Solubility Drugs from Their In Vitro Dissolution Data, Pharmaceutical Research, 16 (1999) 1876-1882.[Crossref]
  • [77] Z. Yu, J. B. Schwartz, E. T. Sugita, Theophylline controlled-release formulations: in vivo-in vitro correlations, Biopharmaceutics & Drug Disposition, 17 (1996) 259-272.[Crossref]
  • [78] H. Kortejärvi, J. Mikkola, M. Bäckman, S. Antila, M. Marvola, Development of level A, B and C in vitro- in vivo correlations for modified-release levosimendan capsules, International Journal of Pharmaceutics, 241 (2002) 87-95.
  • [79] J. B. Dressman, C. Reppas, In vitro-in vivo correlations for lipophilic, poorly water-soluble drugs, European Journal of Pharmaceutical Sciences, 11, Supplement 2 (2000) S73-S80. [Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.