Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2014 | 1 | 1 |

Article title

From Traditional Drug Design to Catalytic
Metallodrugs: A Brief History of the Use of Metals
in Medicine

Content

Title variants

Languages of publication

EN

Abstracts

EN
Traditional drug design has been effective in the
development of therapies for a variety of disease states but
there is a need for new approaches that will tackle new
challenges and complement current paradigms. The use
of metals in medicine has resulted in several successes
and allows for the introduction of properties that cannot
be achieved by use of organic compounds alone, but
also introduces new challenges that can be addressed
by a careful understanding of the principles of inorganic
chemistry. Toward this end, the unique structural and
coordination chemistry, as well as the reactivity of metals,
has been used to design novel classes of therapeutic
and diagnostic agents. This review briefly summarizes
progress in the field of therapeutics, from the earliest
use of metals to more recent efforts to design catalytic
metallodrugs that promote the irreversible inactivation of
therapeutically relevant targets.

Publisher

Journal

Year

Volume

1

Issue

1

Physical description

Dates

online
30 - 12 - 2014

Contributors

  • Evans Laboratory of Chemistry, The Ohio State
    University, 100 West 18th Avenue, Columbus, Ohio 43210
author
  • Evans Laboratory of Chemistry, The Ohio State
    University, 100 West 18th Avenue, Columbus, Ohio 43210
  • MetalloPharm LLC, 1790 Riverstone Drive, Delaware, OH
    43015

References

  • [1] Ibsim. 110 years history of aspirin: effectiveness and activitymechanism. Hwahak Sekye 2009, 49, 48-52.
  • [2] Corliss J., O. A salute to Antony van Leeuwenhoek of Delft, mostversatile 17th century founding father of protistology. Protist2002, 153, 177-190.
  • [3] Rao, K. K. Life and work of Robert Hooke (1635-1703). J. Inst.Eng. (India), Part GE 1967, 48, 42-50.
  • [4] Popescu, A.; Doyle, R. J. The Gram stain after more than acentury. Biotech. Histochem. 1996, 71, 145-151.[Crossref]
  • [5] Artenstein A., W. The discovery of viruses: advancing scienceand medicine by challenging dogma. Int. J. Infect. Dis. 2012, 16,e470-473.[Crossref]
  • [6] Bruce-Chwatt, L. J. Alphonse Laveran’s discovery 100 years agoand today’s global fight against malaria. J. R. Soc. Med. 1981,74, 531-536.
  • [7] Guo, Z. Structure-activity relationships in medicinal chemistry:development of drug candidates from lead compounds.Pharmacochem. Libr. 1995, 23, 299-320.[Crossref]
  • [8] Thorburn, A. L. Paul Ehrlich: pioneer of chemotherapy and cureby arsenic (1854-1915). Br. J. Vener. Dis. 1983, 59, 404-405.
  • [9] Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J.Experimental and computational approaches to estimatesolubility and permeability in drug discovery and developmentsettings. Adv. Drug Delivery Rev. 2001, 46, 3-26.[Crossref]
  • [10] Izzo, J. L., Jr.; Weir, M. R. Angiotensin-converting enzymeinhibitors. J. Clin. Hypertens. 2011, 13, 667-675.[Crossref]
  • [11] Opie, L. H.; Kowolik, H. The discovery of captopril: from largeanimals to small molecules. Cardiovasc. Res. 1995, 30, 18-25.[Crossref]
  • [12] Noble, T. A.; Murray, K. M. Lisinopril: a nonsulfhydrylangiotensin-converting enzyme inhibitor. Clin. Pharm. 1988, 7,659-669.
  • [13] Butler, J. S.; Sadler, P. J. Targeted delivery of platinum-basedanticancer complexes Curr. Opin. Chem. Biol. 2013, 17, 175-188.[Crossref]
  • [14] Dhara, S.; Kolishettib, N.; J., L. S.; Farokhzadb, O. C. Targeteddelivery of a cisplatin prodrug for safer and more effectiveprostate cancer therapy in vivo. Proc. Natl Acad. Sci. USA 2011,108, 1850–1855.[Crossref]
  • [15] Dorr, M.; Meggers, E. Metal complexes as structural templatesfor targeting proteins. Curr. Opin. Chem. Biol. 2014, 19, 76-81.[Crossref]
  • [16] Hearn, J. M.; Romero-Canelón, I.; Qamar, B.; Liu, Z.; Hands-Portman, I.; Sadler, P. J. Organometallic iridium(III) anticancercomplexes with new mechanisms of action: NCI-60 screening,mitochondrial targeting, and apoptosis. Chem. Biol. 2013, 8,1335−1343.
  • [17] Lum, C. T.; Sun, R. W.-Y.; Zou, T.; Che, C.-M. Gold(III) complexesinhibit growth of cisplatin resistant ovarian cancer inassociation with upregulation of proapoptotic PMS2 gene.Chem. Sci. 2014, 5, 1579-1584.[Crossref]
  • [18] Mjos, K. D.; Orvig, C. Metallodrugs in medicinal inorganicchemistry. Chem. Rev. 2014, 114, 4540−4545.[Crossref]
  • [19] Valencia, P. M.; Pridgen, E. M.; Perea, B.; Gadde, S.; Sweeney,C.; Kantoff, P. W.; Bander, N. H.; Lippard, S. J.; Langer, R.;Karnik, R. Synergistic cytotoxicity of irinotecan and cisplatinin dual-drug targeted polymeric nanoparticles. Nanomedicine2013, 8, 687-698.[Crossref]
  • [20] Wu, K.; Liu, S.; Luo, Q.; Hu, W.; Li, X.; Wang, F.; Zheng, R.; Cui,J.; Sadler, P. J.; Xiang, J. Thymines in single-stranded pligonucleotidesand G-quadruplex DNA are competitive with guaninesfor binding to an organoruthenium anticancer complex. Inorg.Chem. 2013, 52, 11332−11342.[Crossref]
  • [21] Lorincz, M. T. Neurologic Wilson’s disease. Ann. N. Y. Acad. Sci.2010, 1184, 173-187.
  • [22] Anderson, G. J. Ironing out disease: inherited disorders of ironhomeostasis. IUBMB Life 2001, 51, 11-17.[Crossref]
  • [23] Tubek, S.; Grzanka, P.; Tubek, I. Role of zinc in hemostasis: Areview. Biol. Trace Elem. Res. 2008, 121, 1-8.
  • [24] Nash Robert, A. Metals in medicine. Altern. Ther. Health Med.2005, 11, 18-25.
  • [25] Nangia, A. K.; Hung, C. T.; Lim, J. K. C. Silver sulfadiazine in themanagement of burns - an update. Med. Actual. 1987, 21-30.
  • [26] de Carvalho Oliveira; Santelli, R. E. Occurrence andchemical speciation analysis of organotin compounds in theenvironment: A review. Talanta 2010, 82, 9–24.
  • [27] Abromowitz, E. W. Historical points of interest on the mode ofaction and ill effects of mercury. Bull. N. Y. Acad. Med. 1934, 10,695-705.
  • [28] Waldron, H. A. Did the mad hatter have mercury poisoning? Br.Med. J. (Clin. Res. Ed.) 1983, 287, 1961.
  • [29] Li, Z.; Conti, P. S. Radiopharmaceutical chemistry for positronemission tomography. Adv. Drug Deliv. Rev. 2010, 62,1031-1051.[Crossref]
  • [30] Waters, E. A.; Wickline, S. A. Contrast agents for MRI. Basic Res.Cardiol. 2008, 103, 114-121.
  • [31] Galm, U.; Hager, M. H.; Van Lanen, S. G.; Ju, J.; Thorson, J. S.;Shen, B. Antitumor antibiotics: bleomycin, enediynes, andmitomycin. Chem. Rev. 2005, 105, 739-758.[Crossref]
  • [32] Feng, L.; Geisselbrecht, Y.; Blanck, S.; Wilbuer, A.; Atilla-Gokcumen, G. E.; Filippakopoulos, P.; Kraling, K.; Celik, M.A.; Harms, K.; Maksimoska, J. Structurally sophisticatedoctahedral metal complexes as highly selective protein kinaseinhibitors. J. Am. Chem. Soc. 2011, 133, 5976-5986.
  • [33] Kumar, K.; Tweedle, M.; Brittain, H. G. Gadoteridol. Anal.Profiles Drug Subst. Excipients 1996, 24, 209-241.[Crossref]
  • [34] Pachet, A. K.; Wisniewski, A. M. The effects of lithium oncognition: an updated review. Psychopharmacology 2003, 170,225-234.
  • [35] Fricker, S. P. Medical uses of gold compounds: Past, presentand future. Gold Bull. 1996, 29, 53-60.[Crossref]
  • [36] Bierer, D. W. Bismuth subsalicylate: history, chemistry, andsafety. Rev. Infect. Dis. 1990, 12, S3-S8.
  • [37] Sundar, S.; Chakravarty, J. Leishmaniasis: an update of currentpharmacotherapy. Expert Opin. Pharmacother. 2013, 14, 53-63.
  • [38] Murray, H. W. Leishmaniasis in the United States: treatment in2012. Am. J. Trop. Med. Hyg. 2012, 86, 434–440.[Crossref]
  • [39] Kennedy, L.; Sahn, S. A. Talc pleurodesis for the treatmentof pneumothorax and pleural effusion. Chest 1994, 106,1215-1222.[Crossref]
  • [40] Moghissia, K.; Dixon, K.; Honsa, B. A.; Stringer, M.; Thorpe, J.A. C. Photofrin PDT for early stage oesophageal cancer: longterm results in 40 patients and literature review. Photodiag.Photodynam. Therap. 2009, 6, 159-166.
  • [41] Douer, D.; Hu, W.; Giralt, S.; Lill, M.; DiPersio, J. Arsenic trioxide(Trisenox) therapy for acute promyelocytic leukemia in thesetting of hematopoietic stem cell transplantation. Oncologist2003, 8, 132-140.[Crossref]
  • [42] Emmanouilides, C. Radioimmunotherapy for non-Hodgkin’slymphoma. Semin. Oncol. 2003, 30, 531-544.[Crossref]
  • [43] Anderson, P.; Nunez, R. Samarium lexidronam (Sm-153-EDTMP): Skeletal radiation for osteoblastic bone metastesesand osteosarcoma. Expert Rev. Anticancer Therap. 2007, 7,1517-1527.
  • [44] Shirley, M.; McCormack, P. L. Radium-223 Dichloride: A reviewof its use in patients with castration-resistant prostate cancerwith symptomatic bone metastases. Drugs 2014, 74, 579-586.[Crossref]
  • [45] Windsor, P. M. Predictors of response to strontium-89(Metastron1) in skeletal metastases from prostate cancer:report of a single centre’s 10-year experience. Clin. Oncol.2001, 13, 219–222.
  • [46] Rosenberg, B.; Vancamp, L.; Krigas, T. Inhibition of cell divisionin Escherichia coli by electrolysis products from a platinumelectrode. Nature 1965, 205, 698-699.
  • [47] Howell, S. B.; Safaei, R.; Larson, C. A.; Sailor, M. J. Coppertransporters and the cellular pharmacology of the platinumcontainingcancer drugs. Mol. Pharmacol. 2010, 77, 887-894.[Crossref]
  • [48] Fuertes, M. A.; Castilla, J.; Alonso, C.; Perez, J. M. Cisplatinbiochemical mechanism of action: from cytotoxicity toinduction of cell death through interconnections betweenapoptotic and necrotic pathways. Curr. Med. Chem. 2003, 10,257-266.[Crossref]
  • [49] Reedijk, J. Fast and slow versus strong and weak metal–DNAbinding: consequences for anti-cancer activity. Metallomics2012, 4, 628-632.[Crossref]
  • [50] Casini, A.; Reedijk, J. Interactions of anticancer Pt compoundswith proteins: an overlooked topic in medicinal inorganicchemistry? Chem. Sci. 2012, 3, 3135-3144.[Crossref]
  • [51] Li, H.; Snelling, J. R.; Barrow, M. P.; Scrivens, J. H.; Sadler, P.J.; O’Connor, P. B. Mass spectrometric strategies to improvethe identification of Pt(II)-modification sites on peptides andproteins. J. Am. Soc. Mass Spectrom. 2014, 25, 1217-1227.
  • [52] Stordal, B.; Pavlakis, N.; Davey, R. Oxaliplatin for the treatmentof cisplatin-resistant cancer: A systematic review. Cancer Treat.Rev. 2007, 33, 347-357.[Crossref]
  • [53] Di Pasqua, A. J.; Goodisman, J.; Dabrowiak, J. C. Understandinghow the platinum anticancer drug carboplatin works: From thebottle to the cell. Inorg. Chim. Acta 2012, 389, 29-35.
  • [54] Umezawa, H.; Maeda, K.; Takeuchi, T.; Okami, Y. Newantibiotics, bleomycin A and B. J. Antibiot., Ser. A 1966, 19,200-209.
  • [55] Burger, R. M.; Projan, S. J.; Horwitz, S. B.; Peisach, J. The DNAcleavage mechanism of iron-bleomycin. Kinetic resolutionof strand scission from base propenal release. J. Biol. Chem.1986, 261, 15955-15959.
  • [56] Chin, J. Developing artificial hydrolytic metalloenzymes bya unified mechanistic approach. Acc. Chem. Res. 1991, 24,145-152.[Crossref]
  • [57] Cowan, J. A. Chemical nucleases. Curr. Opin. Chem. Biol. 2001,5, 634-642.[Crossref]
  • [58] Haner, R. Artificial ribonucleases. Chimia 2001, 55, 1035-1037.
  • [59] Jin, Y.; Lewis, M. A.; Gokhale, N. H.; Long, E. C.; Cowan, J. A.Influence of stereochemistry and redox potentials on thesingle- and double-strand DNA cleavage efficiency of Cu(II)· andNi(II)·Lys-Gly-His-derived ATCUN metallopeptides. J Am ChemSoc 2007, 129, 8353-8361.[Crossref]
  • [60] Kikuta, E.; Aoki, S.; Kimura, E. A New Type of Potent Inhibitorsof HIV-1 TAR RNA-Tat peptide binding by zinc(II)-macrocyclictetraamine complexes. J. Am. Chem. Soc. 2001, 123, 7911-7912.
  • [61] Livieri, M.; Mancin, F.; Tonellatoa, U.; Chin, J. Multiplefunctional group cooperation in phosphate diester cleavagepromoted by Zn(II) complexes. Chem. Commun. 2004, 2862-63.[Crossref]
  • [62] Morrow, J. R.; Amyes, T. L.; Richard, J. P. Phosphate bindingenergy and catalysis by small and large molecules. Acc. Chem.Res. 2008, 41, 539-548.[Crossref]
  • [63] Sreedhara, A.; Cowan, J. A. Catalytic hydrolysis of DNA by metalions and complexes. J. Biol. Inorg. Chem. 2001, 6, 337-347.[Crossref]
  • [64] Suh, J. Synthetic artificial peptidases and nucleases usingmacromolecular catalytic systems. Acc. Chem. Res. 2003, 36,562-570.[Crossref]
  • [65] Suh, J.; Chei, W. S. Metal complexes as artificial proteases:toward catalytic drugs. Curr. Op. Chem. Biol. 2008, 12, 207-213.[Crossref]
  • [66] Yashiro, M.; Ishikubo, A.; Komiyama, M. Dinuclearlanthanum(III) complex for Efficient hydrolysis of DNA. J.Biochem. 1996, 120, 1067-1069.[Crossref]
  • [67] Yoo, S. H.; Lee, B. J.; Kim, H.; Suh, J. Artificial metalloproteasewith active site comprising aldehyde group and Cu(II) cyclencomplex. J. Am. Chem. Soc. 2005, 127, 9593-9602.
  • [68] Hocharoen, L.; Cowan, J. A. Metallotherapeutics: Novelstrategies in drug design. Chem. Eur. J. 2009, 15, 8670-8676.[Crossref]
  • [69] Sarkar, B.; Wigfield, Y. Evidence for albumin-Cu(II)-amino acidternary complex. Can. J. Biochem. 1968, 46, 601-607.[Crossref]
  • [70] Lau, S.-J.; Kruck, T. P. A.; Sarkar, B. Peptide molecule mimickingthe copper(II) transport site of human serum albumin.Comparative study between the synthetic site and albumin. J.Biol. Chem. 1974, 249, 5878-5884.
  • [71] Brittain, I. J.; Huang, X.; Long, E. C. Selective recognition andcleavage of RNA loop structures by Ni (II)-Xaa-Gly-His metallopeptides.Biochemistry 1998, 37, 12113-12120.[Crossref]
  • [72] Camerman, N.; Camerman, A.; Sarkar, B. Molecular designto mimic the copper(II) transport site of human albumin. Thecrystal and molecular structure of copper(II)-glycylglycyl-Lhistidine-N-methyl amide monoaquo complex. Can. J. Chem.1976, 54, 1309-1316.[Crossref]
  • [73] Conato, C.; Kozlowski, H.; Mlynarz, P.; Pulidori, F.; Remelli,M. Copper and nickel complex-formation equilibria withLys-Gly-His-Lys, a fragment of the matricellular protein SPARC.Polyhedron 2002, 21, 1469-1474.[Crossref]
  • [74] Harford, C.; Sarkar, B. Amino terminal Cu(II)- and Ni(II)-binding(ATCUN) motif of proteins and peptides: metal binding, DNA cleavage, and other properties. Acc. Chem. Res. 1997, 30,123-130.[Crossref]
  • [75] McDonald, M. R.; Fredericks, F. C.; Margerum, D. W. Characterizationof copper(III)-tetrapeptide complexes with histidine asthe third residue. Inorg. Chem. 1997, 36, 3119-3124.[Crossref]
  • [76] Gokhale, N. H.; Cowan, J. A. Metallopeptide-promotedinactivation of angiotensin-converting enzyme and endothelinconvertingenzyme 1: toward dual-action therapeutics. J. Biol.Inorg. Chem. 2006, 11, 937-947.
  • [77] Gokhale, N. H.; Bradford, S.; Cowan, J. A. Catalytic inactivationof human carbonic anhydrase I by a metallopeptidesulfonamideconjugate is mediated by oxidation of active siteresidues. J. Am. Chem. Soc. 2008, 130, 2388-2389.[Crossref]
  • [78] Joyner, J. C.; Hocharoen, L.; Cowan, J. A. Targeted catalyticinactivation of angiotensin converting enzyme by lisinoprilcoupledtransition metal chelates. J. Am. Chem. Soc. 2012, 134,3396-3410.
  • [79] Kim, M.-s.; Jeon, J. W.; Suh, J. Angiotensin-cleaving catalysts:conversion of N-terminal aspartate to pyruvate throughoxidative decarboxylation catalyzed by Co(III)cyclen. J. Biol.Inorg. Chem. 2005, 10, 364-372.[Crossref]
  • [80] Chei, W. S.; Ju, H.; Suh, J. New chelating ligands for Co(III)-based peptide-cleaving catalysts selective for pathogenicproteins of amyloidoses. J. Biol. Inorg. Chem. 2011, 16, 511-519.[Crossref]
  • [81] Podsiadlo, P.; Komiyama, T.; S., F. R.; Blum, O. Furin inhibitionby compounds of copper and zinc. J. Biol. Chem. 2004, 279,36219–36227.
  • [82] Joyner, J. C.; Hodnick, W. F.; Cowan, A. S.; Tamuly, D.; Boyd,R.; Cowan, J. A. Antimicrobial metallopeptides with broadnuclease and ribonuclease activity. Chem. Commun. 2013, 49,2118-2120.[Crossref]
  • [83] Preihs, C.; Arambula, J. F.; Magda, D.; Jeong, H.; Yoo, D.;Cheon, J.; Siddik, Z. H.; Sessler, J. L. Recent developments intexaphyrin chemistry and drug discovery. Inorg. Chem. 2013,52, 12184−12112.[Crossref]
  • [84] Kameshima, W.; Ishizuka, T.; Minoshima, M.; Yamamoto, M.;Sugiyama, H.; Xu, Y.; Komiyama, M. Conjugation of peptidenucleic acid with a pyrrole/imidazole polyamide to specificallyrecognize and cleave DNA. Ang. Chem. Int. Ed. 2013, 52, 13681–13684.[Crossref]
  • [85] Joyner, J. C.; Keuper, K. D.; Cowan, J. A. Kinetics andmechanisms of oxidative cleavage of HIV RRE RNA byRev-coupled transition metal–chelates. Chem. Sci. 2013.
  • [86] Joyner, J. C.; Cowan, J. A. Targeted cleavage of HIV RRE RNA byRev-coupled transition metal chelates. J. Am. Chem. Soc. 2011,133, 9912-9922.
  • [87] Bradford, S.; Cowan, J. A. Catalytic metalloDrugs targeting HCVIRES RNA. Chem. Commun. 2012, 48, 3118-3120.[Crossref]
  • [88] Bradford, S. S.; Ross, M. J.; Fidai, I.; Cowan, J. A. Insightinto the recognition, binding, and reactivity of catalyticmetallodrugs targeting stem loop IIb of hepatitis C IRES RNA.ChemMedChem 2014, 9, 1275–1285.[Crossref]
  • [89] Cowan, J. A. Catalytic metallodrugs. Pure & App. Chem. 2008,80, 1799-1810.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_medr-2014-0002
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.