Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2014 | 1 | 1 |

Article title

Quantification of the titanium content in metallodrug-exposed tumor cells using HR-CS AAS


Title variants

Languages of publication



High-resolution continuum source atomic absorption spectroscopy (HR-CS AAS) is a valuable analytical technique for metal quantification because of its high sensitivity and selectivity for metal atoms as well as its improved background correction mode. However, the quantification of metals in biological materials, e.g. cell lysates, is still challenging because of matrix effects and other experimental complications. A method to quantify the titanium content of tumor cells exposed to titanium-based drugs was developed using HR-CS AAS. This method allows the quantification of titanium in cell suspensions in the low µg L-1 range with a detection limit of 48.8 µg L-1. The procedure was applied to the study of the cellular uptake of novel titanium metallodrugs (namely titanium (IV) salan complexes) and results showed a higher accumulation of these complexes in cancer cells compared to the titanium lead compound, titanocene dichloride. The improved cellular uptake of the studied complexes indicates a target located inside the cells and this could possibly lead to a higher antitumor effect of this novel class of metallodrugs. The antiproliferative potential of the complexes was confirmed in two different cancer cell lines, in which the titanium complexes showed good to moderate activity.








Physical description


10 - 3 - 2014
19 - 11 - 2013
27 - 9 - 2013


  • Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, 38106 Braunschweig, Germany
  • Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
  • Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
  • Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, 38106 Braunschweig, Germany


  • [1] Timerbaev A., Stürup S., Analytical approaches for assaying metallodrugs in biological samples: recent methodological developments and future trends, Curr. Drug Metab., 2012; 13, 272-283.[WoS][Crossref]
  • [2] Lewen, N., The use of atomic spectroscopy in the pharmaceutical industry for the determination of trace elements in pharmaceuticals, J. Pharm. Biomed. Anal., 2011; 55, 653-661.[Crossref]
  • [3] West M., Ellis A.T., Potts P.J., Streli C., Vanhoof C., Wegrzynekf D., Wobrauschek P., Atomic spectrometry update – A review of advances in X-ray fluorescence spectrometry, J. Anal. Atom. Spectrom., 2013; 28, 1544-1590.[Crossref]
  • [4] Szoboszlai N., Polgari Z., Mihucz V.G., Zaray G., Recent trends in total reflection X-ray fluorescence spectrometry for biological applications, Anal. Chim. Acta, 2009; 633, 1-18.
  • [5] Ott I., Biot C., Hartinger C., AAS, XRF and MS methods in inorganic chemical biology, in: Inorganic Chemical Biology: Principles, Techniques and Applications. John Wiley & Sons, Ltd, UK.
  • [6] Welz B., Borges D.L.G., Lepri F.G., Vale M.G.R., Heitmann U., High-resolution continuum source electrothermal atomic absorption spectrometry - An analytical and diagnostic tool for trace analysis, Spectrochim. Acta B, 2007; 62, 873-883.[Crossref]
  • [7] Becker-Ross H., Florek S., Heitmann U., Huang M.D., Okruss M., Radziuk B., Continuum source atomic absorption spectrometry and detector technology: A historical perspective, Spectrochim. Acta B, 2006; 61B (9), 1015-1030.[Crossref]
  • [8] Schur J., Manna C.M., Deally A., Köster R.W., Tacke M., Tshuva E.Y., Ott I., A comparative chemical-biological evaluation of titanium(IV) complexes with a salan or cyclopentadienyl ligand, Chem. Commun., 2013; 49 (42), 4785-4787.[Crossref][WoS]
  • [9] Tshuva E.Y., Ashenhurst J.A., Cytotoxic titanium(IV) complexes: Renaissance, Eur. J. Inorg. Chem., 2009; 2203-2218.[Crossref]
  • [10] Keppler B.K., Heim M.E., Antitumor-active bis-diketonato metal complexes: Budotitane - A new anticancer agent, Drugs Future, 1988; 13 (7), 637-652.
  • [11] Korfel A., Scheulen M.E., Schmoll H.J., Gründel O., Harstrick A., Knoche M., Fels L.M., Skorzec M., Bach F., Baumgart J., Sass G., Seeber S., Thiel E., Berdel W.E., Phase I clinical and pharmacokinetic study of titanocene dichloride in adults with advanced solid tumors, Clin. Cancer Res., 1998; 4, 2701-2708.
  • [12] Schilling T., Keppler B.K., Heim M.E., Niebch G., Dietzfelbinger H., Rastetter J., Hanauske A.-R., Clinical phase I and pharmacokinetic trial of the new titanium complex budotitane, Invest New Drugs, 1995/1996; 13, 327-332.
  • [13] Keppler B.K., Friesen C., Vongerichten H., Vogel E., Budotitane, a new tumor-inhibiting titanium compound: preclinical and clinical development, Met. Complexes Cancer Chemother., 1993; 297-323.
  • [14] Melendez E., Titanium complexes in cancer treatment, Crit. Rev. Oncol. Hematol., 2002; 42, 309-315.[Crossref]
  • [15] Köpf-Maier P., Complexes of metals other than platinum as antitumour agents, Eur. J. Clin. Pharmacol., 1994; 47, 1-16.
  • [16] Peri D., Meker S., Shavit M., Tshuva E.Y., Synthesis, characterization, cytotoxicity, and hydrolytic behavior of C2- and C1-Symmetrical Ti(IV) complexes of tetradentate diamine bis(phenolato) ligands: A new class of antitumor agents, Chem. Eur. J., 2009; 15, 2403-2415.[Crossref]
  • [17] Peri D., Meker S., Manna C.M., Tshuva E.Y., Different ortho and para electronic effects on hydrolysis and cytotoxicity of diamino bis(phenolato) “salan” Ti(IV) complexes, Inorg. Chem., 2011; 50, 1030-1038.[Crossref][WoS]
  • [18] Einhäuser T.J., Pieper T.G., Keppler B.K., Titanium determination in human blood plasma by ICP-OES, longitudinally, and transversally heated Zeeman ETAAS, J. Anal. At. Spectrom., 1998; 13, 1173-1176.[Crossref]
  • [19] Nakahara T., Munemori M., Musha S., Determination of titanium in some metallurgical materials by atomic absorption spectrophotometry, Bull. Chem. Soc. Jpn., 1973; 46 (4), 1172-1177.[Crossref]
  • [20] Slavin W., Manning D.C., Garnick G.R., Effect of graphite furnace substrate materials on analyses by furnace atomic absorption spectrometry, Anal. Chem., 1981; 53, 1504-1509.[Crossref]
  • [21] Aller A.J., Roll-over effect in graphite furnace atomic absorption spectrometry with a gold pulsed hollow-cathode lamp, Anal. Chem. Acta, 1993; 284 (2), 361-366.[Crossref]
  • [22] Galan, L. de, De Loos-Vollebregt M.T.C., Roll-over of analytical curves in atomic absorption spectrometry arising from background correction with pulse hollow-cathode lamps, Spectrochim. Acta, 1984; 39 B (8), 1011-1019.[Crossref]
  • [23] Welz B., Sperling M., Atomabsorptionsspektroskopie, 4. Aufl., Wiley-VCH, Weinheim, 1997.
  • [24] Welz B., Becker-Ross H., Florek S. and Heitmann U., High-resolution continuum source AAS, Wiley-VCH, 2005.
  • [25] Bradford M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Biochemistry, 1976; 72, 248-254.
  • [26] Ott I., Scheffler H., Gust R., Development of a method for the quantification of the molar gold concentration in tumor cells exposed to gold-containing drugs, ChemMedChem, 2007; 2, 702-707.[Crossref][WoS]
  • [27] Scheffler H., You Y., Ott I., Comparative studies on the cytotoxicity, cellular and nuclear uptake of a series of chloro gold(I) phosphine complexes, Polyhedron, 2010; 29, 66–69.[WoS][Crossref]
  • [28] Ott I., Scharwitz M., Scheffler H., Sheldrick W.S., Gust R., Atomic absorption spectrometric determination of the iridium content in tumor cells exposed to an iridium metallodrug, J. Pharm. Biomed. Anal., 2008; 47, 938-942.[Crossref][WoS]
  • [29] Shavit M., Peri D., Manna C.M., Alexander J.S., Tshuva E.Y., Active cytotoxic reagents based on non-metallocene non-diketonato well-defined C2-symmetrical titanium complexes of tetradentate bis(phenolato) ligands, J. Am. Chem. Soc., 2007; 129, 12098-12099.[WoS]
  • [30] Manna C.M., Tshuva E.Y., Markedly different cytotoxicity of the two enantiomers of C2-symmetrical Ti(IV) phenolato complexes; mechanistic implications, Dalton Trans., 2010; 39, 1182-1184.
  • [31] Manna C.M., Armony, G., Tshuva E.Y., New insights on the active species and mechanism of cytotoxicity of salan-Ti(IV) complexes: A stereochemical study, Inorg. Chem., 2011; 50 (20), 10284-10291.[Crossref]
  • [32] Meker S., Margulis-Goshen K., Weiss E., Magdassi S., Tshuva E.Y., High antitumor activity of highly resistant salan–titanium(IV) complexes in nanoparticles: An identified active species, Angew. Chem. Int. Ed., 2012; 51 (42), 10515-10517.[Crossref][WoS]
  • [33] Manna C.M., Braitband O., Weiss E., Hochmann J., Tshuva E.Y., Cytotoxic salan–titanium(IV) complexes: High activity toward a range of sensitive and drug-resistant cell lines, and mechanistic insights, ChemMedChem, 2012; 7, 703-708.[Crossref][WoS]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.