PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 1 | 28-50
Article title

TLRs and tryptophan metabolism at the crossroad
of immunoregulatory pathways

Content
Title variants
Languages of publication
EN
Abstracts
EN
The capacity of Toll-like receptors (TLRs) to act
as pathogen sensors, to detect microorganism-derived
conserved molecular structures, and to induce activation
of antigen-presenting cells which secrete large amounts
of type I interferons makes them attractive targets for
vaccination and immunotherapeutic strategies. However,
there is now considerable evidence to support that TLRs
play an essential role in specific disease pathogenesis
and may be novel targets for therapy. To transmit
their signal to the nucleus and initiate activation of
proinflammatory and antimicrobial genes, TLRs must
initiate a cytoplasmic signaling cascade, which is
controlled by signaling adaptors. These adaptors are
crucial for activating the correct immune response to any
given TLR/pathogen interaction. Disruption or improper
signaling may lead to uncontrolled inflammation and
the development of TLR-dependent inflammatory
diseases. Indoleamine 2,3-dioxygenase 1 (IDO1) is the
main tryptophan catabolic enzyme in mammals. At the
intersection of the early defense mechanisms against
pathogens and the complex signaling events presiding
over longer-term immune homeostasis, the IFN–IDO1
axis is capable of downregulating immune responses, to
minimize immune-mediated tissue and organ damage in
the context of infectious immunity, infection-associated
auto-immunity, and overreactive inflammatory responses.
Finely tuned mechanisms regulate IDO1 functions at both
the transcriptional and posttranslational levels, and
IDO1 itself is a signaling molecule in a complex immune
regulatory network. Recent work has revealed that the
TLR9/TRIF/TRAF6 immunoregulatory pathway, which
involves IRF3 and TGF-β production and is activated in
plasmacytoid dendritic cells (pDCs) by high-dose CpGODN,
represents a prototypic regulator that negatively controls inflammatory reaction, but positively regulates
noncanonical NF-κB signaling and IDO1 induction and
function. This might indicate that the modulation of TLRs
could be a means through which tryptophan metabolism,
when aberrant, could be controlled. More importantly, the
above considerations suggest that activation of IDO1 could
be a novel potential therapeutic strategy under conditions
in which uncontrolled proinflammatory cytokine
secretion in response to TLR signaling contributes to acute
or chronic overreactive responses.
Publisher
Year
Volume
1
Pages
28-50
Physical description
Dates
received
1 - 5 - 2014
online
25 - 6 - 2014
accepted
28 - 5 - 2014
References
  • [1] Colonna M., Trinchieri G., Liu Y.J., Plasmacytoid dendritic cells in immunity, Nat. Immunol., 2004, 5, 1219-1226[Crossref]
  • [2] Heath W.R., Carbone F.R., Dendritic cell subsets in primary and secondary T cell responses at body surfaces, Nat. Immunol., 2009, 10, 1237-1244[Crossref]
  • [3] Matta B.M., Castellaneta A., Thomson A.W., Tolerogenic plasmacytoid DC, Eur. J. Immunol., 2010, 40, 2667-2676[Crossref]
  • [4] Swiecki M., Colonna M., Unraveling the functions of plasmacytoid dendritic cells during viral infections, autoimmunity, and tolerance, Immunol. Rev., 2010, 234, 142-162
  • [5] Moseman E.A., Liang X., Dawson A.J., Panoskaltsis-Mortari A., Krieg A.M., et al., Human plasmacytoid dendritic cells activated by CpG oligodeoxynucleotides induce the generation of CD4+CD25+ regulatory T cells, J. Immunol., 2004, 173, 4433-4442
  • [6] Villadangos J.A., Young L., Antigen-presentation properties of plasmacytoid dendritic cells, Immunity, 2008, 29, 352-361[Crossref]
  • [7] Gilliet M., Cao W., Liu Y.J., Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases, Nat. Rev. Immunol., 2008, 8, 594-606[Crossref]
  • [8] Nikolic T., Welzen-Coppens J.M., Leenen P.J., Drexhage,H.A., Versnel M.A., Plasmacytoid dendritic cells in autoimmune diabetes - potential tools for immunotherapy, Immunobiology, 2009, 214, 791-799
  • [9] Kovacs E.J., Palmer J.L., Fortin C.F., Fulop T. Jr., Goldstein D.R., Linton P.J., Aging and innate immunity in the mouse: impact of intrinsic and extrinsic factors, Trends Immunol., 2009, 30, 319-324[Crossref]
  • [10] Tsujimura H., Tamura T., Ozato K., Cutting edge: IFN consensus sequence binding protein/IFN regulatory factor 8 drives the development of type I IFN-producing plasmacytoid dendritic cells, J. Immunol., 2003, 170, 1131-1135
  • [11] Hou B., Reizis B., DeFranco A.L., Toll-like receptors activate innate and adaptive immunity by using dendritic cell-intrinsic and -extrinsic mechanisms, Immunity, 2008, 29, 272-282[Crossref]
  • [12] Sjolin H., Robbins S.H., Besso, G., Hidmark A., Tomasello E., Johansson M., et al., DAP12 signaling regulates plasmacytoid dendritic cell homeostasis and down-modulates their function during viral infection, J. Immunol., 2006, 177, 2908-2916
  • [13] Akira S., Takeda K., Kaisho T. , Toll-like receptors: critical proteins linking innate and acquired immunity, Nat. Immunol., 2001, 2, 675-680[Crossref]
  • [14] Cao W., Manicassamy S., Tang H., Kasturi S.P., Pirani A., Murthy N., et al., Toll-like receptor-mediated induction of type I interferon in plasmacytoid dendritic cells requires the rapamycin-sensitive PI(3)K-mTOR-p70S6K pathway, Nat. Immunol., 2008, 9, 1157-1164
  • [15] Ito T., Wang Y.H., Liu Y.J., Plasmacytoid dendritic cell precursors/type I interferon-producing cells sense viral infection by Toll-like receptor (TLR) 7 and TLR9, Springer Semin. Immunopathol., 2005, 26, 221-229
  • [16] Lund J., Sato A., Akira S., Medzhitov R., Iwasaki A., Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells, J. Exp. Med. 2003, 198, 513-520
  • [17] Klinman D.M., Immunotherapeutic uses of CpG oligodeoxynucleotides, Nat. Rev. Immunol., 2004, 4, 249-258[Crossref]
  • [18] Shirota H., Klinman D.M., Recent progress concerning CpG DNA and its use as a vaccine adjuvant. Expert Rev Vaccines, 2014, 13, 299-312
  • [19] Fallarino F., Puccetti, P., 2006. Toll-like receptor 9-mediated induction of the immunosuppressive pathway of tryptophan catabolism, Eur. J. Immunol., 2006, 36, 8-11[Crossref]
  • [20] Fallarino F., Volpi C., Zelante T., Vacca C., Calvitti M., Fioretti M.C., et al., IDO mediates TLR9-driven protection from experimental autoimmune diabetes, J. Immunol., 2009, 183, 6303-6312
  • [21] Volpi C., Fallarino F., Pallotta M.T., Bianchi R., Vacca C., Belladonna M.L., et al., High doses of CpG oligodeoxynucleotides stimulate a tolerogenic TLR9-TRIF pathway, Nat. Commun. 2013, http://www.nature.com/ncomms/journal/v4/n5/full/ncomms2874.html
  • [22] Manches O., Fernandez M.V., Plumas J., Chaperot L., Bhardwaj N., Activation of the noncanonical NF-κB pathway by HIV controls a dendritic cell immunoregulatory phenotype, Proc. Natl. Acad. Sci. U.S.A., 2012, 109, 14122-14127[Crossref]
  • [23] Grohmann U., Fallarino F., Puccetti P. , Tolerance, DCs and tryptophan: much ado about IDO, Trends Immunol., 2003, 24, 242-248[Crossref]
  • [24] Mellor A.L., Munn D.H., IDO expression by dendritic cells: tolerance and tryptophan catabolism, Nat. Rev. Immunol., 2004, 4, 762-774[Crossref]
  • [25] Mellor A.L., Munn D.H., Creating immune privilege: active local suppression that benefits friends, but protects foes, Nat. Rev. Immunol., 2008, 8, 74-80[Crossref]
  • [26] Wingender G., Garbi N., Schumak B., Jungerkes F., End, E., von Bubnoff D., et al., Systemic application of CpG-rich DNA suppresses adaptive T cell immunity via induction of IDO, Eur. J. Immunol., 2006, 36, 12-20[Crossref]
  • [27] Fallarino F., Grohmann U., Vacca C., Bianchi R., Orabona C., Spreca A., et al., T cell apoptosis by tryptophan catabolism, Cell Death Differ., 2002, 9, 1069-1077[Crossref]
  • [28] Fallarino F., Grohmann U., You S., McGrath B.C., Cavener D.R., Vacca C., et al., The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor ζ-chain and induce a regulatory phenotype in naive T cells. J. Immunol. 2006, 176, 6752-6761
  • [29] Fallarino F., Grohmann,U., Hwang K.W., Orabona C., Vacca C., Bianchi R., et al., Modulation of tryptophan catabolism by regulatory T cells, Nat. Immunol., 2003, 4, 1206-1212[Crossref]
  • [30] Grohmann U., Volpi C., Fallarino F., Bozza S., Bianchi R., Vacca C., et al., Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy, Nat. Med. 2007, 13, 579-586[Crossref]
  • [31] Puccetti P., Grohmann U., IDO and regulatory T cells: a role for reverse signalling and non-canonical NF-kappaB activation, Nat. Rev. Immunol., 2007, 7, 817-823[Crossref]
  • [32] Fallarino F., Grohmann U., Using an ancient tool for igniting and propagating immune tolerance: IDO as an inducer and amplifier of regulatory T cell functions, Curr. Med. Chem., 2011, 18, 2215-2221[Crossref]
  • [33] Medzhitov R., Toll-like receptors and innate immunity, Nat. Rev. Immunol., 2001, 1, 135-145
  • [34] Takeda K., Kaisho T., Akira S., Toll-like receptors, Annu. Rev. Immunol., 2003, 21, 335-376[Crossref]
  • [35] Botos I., Segal D.M., Davies D.R., The structural biology of Toll-like receptors, Structure, 2011, 19, 447-459[Crossref]
  • [36] Jin M.S., Lee J.O., Structures of the toll-like receptor family and its ligand complexes, Immunity, 2008, 29, 182-191[Crossref]
  • [37] Reuven E.M., Fink A., Shai Y., Regulation of innate immune responses by transmembrane interactions: Lessons from the TLR family, Biochim. Biophys. Acta, 2014, 1838, 1586-1593
  • [38] Wang R.F., Miyahara Y., Wang H.Y., Toll-like receptors and immune regulation: implications for cancer therapy, Oncogene, 2008, 27, 181-189[Crossref]
  • [39] Liew F.Y., Xu D., Brint E.K., O’Neill L.A., Negative regulation of toll-like receptor-mediated immune responses, Nat. Rev. Immunol., 2005, 5, 446-458[Crossref]
  • [40] Volpi C., Fallarino F., Bianchi R., Orabona C., De Luca A., Vacca C., et al., A GpC-rich oligonucleotide acts on plasmacytoid dendritic cells to promote immune suppression, J. Immunol., 2012, 189, 2283-2289
  • [41] Ozinsky A., Underhill D.M., Fontenot J.D., Hajjar A.M., Smith K.D., Wilson C.B., et al., The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors, Proc. Natl. Acad. Sci. U.S.A., 2000, 97, 13766-13771[Crossref]
  • [42] van Bergenhenegouwen J., Plantinga T.S., Joosten L.A., Netea M.G., Folkerts G., Kraneveld A.D., et al., TLR2 & Co: a critical analysis of the complex interactions between TLR2 and coreceptors, J. Leukoc. Biol., 2013, 94, 885-902
  • [43] Strober W., Murray P.J., Kitani A., Watanabe T., Signalling pathways and molecular interactions of NOD1 and NOD2, Nat. Rev. Immunol., 2006, 6, 9-20[Crossref]
  • [44] Kadowaki N., Ho S., Antonenko S., Malefyt R.W., Kastelein R.A., Bazan F., et al., Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens, J. Exp. Med., 2001, 194, 863-869
  • [45] Aubry C., Corr S.C., Wienerroither S., Goulard C., Jones R., Jamieson A.M., et al., Both TLR2 and TRIF contribute to interferon-beta production during Listeria infection, PLoS One, 2012, http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0033299
  • [46] Owens B.M., Moore J.W., Kaye P.M., IRF7 regulates TLR2-mediated activation of splenic CD11chi dendritic cells, PLoS One, 2012, http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0041050
  • [47] Round J.L., Lee S.M., Li J., Tran G., Jabri B., Chatila T.A., et al., The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota, Science, 2011, 332, 974-977
  • [48] Alexopoulou L., Holt A.C., Medzhitov R., Flavell R.A., Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3, Nature, 2001, 413, 732-738
  • [49] Heinz S., Haehnel V., Karaghiosoff M., Schwarzfischer L., Muller M., Krause S.W., et al., Species-specific regulation of Toll-like receptor 3 genes in men and mice, J. Biol. Chem., 2003, 278, 21502-21509
  • [50] Hornung V., Rothenfusser S., Britsch S., Krug A., Jahrsdorfer B., Giese T., et al., Quantitative expression of toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides, J. Immunol., 2002, 168, 4531-4537
  • [51] Lundberg A.M., Drexler S.K., Monaco C., Williams L.M., Sacre S.M., Feldmann M., et al., Key differences in TLR3/poly I:C signaling and cytokine induction by human primary cells: a phenomenon absent from murine cell systems, Blood, 2007, 110, 3245-3252[Crossref]
  • [52] Orinska Z., Bulanova E., Budagian V., Metz M., Maurer M., Bulfone-Paus S., TLR3-induced activation of mast cells modulates CD8+ T-cell recruitment, Blood, 2005, 106, 978-987[Crossref]
  • [53] Tabiasco J., Devevre E., Rufer N., Salaun B., Cerottini J.C., Speiser D., et al., Human effector CD8+ T lymphocytes express TLR3 as a functional coreceptor, J. Immunol., 2006, 177, 8708-8713
  • [54] Wesch D., Beetz S., Oberg H.H., Marget M., Krengel K., Kabelitz D., Direct costimulatory effect of TLR3 ligand poly(I:C) on human gamma delta T lymphocytes, J. Immunol., 2006, 176, 1348-1354
  • [55] Zarember K.A., Godowski P.J., Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines, J. Immunol., 2002, 168, 554-561
  • [56] Cario E., Podolsky D.K., Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease, Infect. Immun., 2000, 68, 7010-7017
  • [57] Kim Y.M., Brinkmann M.M., Paquet M.E., Ploegh H.L., UNC93B1 delivers nucleotide-sensing toll-like receptors to endolysosomes, Nature, 2008, 452, 234-238
  • [58] Johnsen I.B., Nguyen T.T., Ringdal M., Tryggestad A.M., Bakke, O., Lien E., et al., Toll-like receptor 3 associates with c-Src tyrosine kinase on endosomes to initiate antiviral signaling, EMBO J., 2006, 25, 3335-3346[Crossref]
  • [59] Sarkar,S.N., Peters K.L., Elco C.P., Sakamoto S., Pal S., Sen G.C., Novel roles of TLR3 tyrosine phosphorylation and PI3 kinase in double-stranded RNA signaling, Nat. Struct. Mol. Biol., 2004, 11, 1060-1067[Crossref]
  • [60] Carty M., Goodbody R., Schroder M., Stack J., Moynagh P.N., Bowie A.G., The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling, Nat. Immunol., 2006, 7, 1074-1081[Crossref]
  • [61] Perales-Linares R., Navas-Martin S., Toll-like receptor 3 in viral pathogenesis: friend or foe?, Immunology, 2013, 140, 153-167
  • [62] Gauzzi M.C., Del Corno M., Gessani S., Dissecting TLR3 signalling in dendritic cells, Immunobiology, 2010, 215, 713-723
  • [63] Lang K.S., Georgiev P., Recher M., Navarini A.A., Bergthaler A., Heikenwalder M., et al., Immunoprivileged status of the liver is controlled by Toll-like receptor 3 signaling, J. Clin. Invest., 2006, 116, 2456-2463
  • [64] de Luca A., Bozza S., Zelante T., Zagarella S., D’Angelo C., Perruccio K., et al., Non-hematopoietic cells contribute to protective tolerance to Aspergillus fumigatus via a TRIF pathway converging on IDO, Cell. Mol. Immunol., 2010, 7, 459-470[Crossref]
  • [65] Suh H.S., Zhao M.L., Rivieccio M., Choi S., Connolly E., Zhao Y., et al., Astrocyte indoleamine 2,3-dioxygenase is induced by the TLR3 ligand poly(I:C): mechanism of induction and role in antiviral response, J. Virol., 2007, 81, 9838-9850[Crossref]
  • [66] Von Bubnoff D., Scheler M., Wilms H., Fimmers R., Bieber T., Identification of IDO-positive and IDO-negative human dendritic cells after activation by various proinflammatory stimuli, J. Immunol., 2011, 186, 6701-6709
  • [67] Wang B., Koga K., Osuga Y., Cardenas I., Izumi G., Takamura M., et al., Toll-like receptor-3 ligation-induced indoleamine 2, 3-dioxygenase expression in human trophoblasts, Endocrinology, 2011, 152, 4984-4992[Crossref]
  • [68] Loh C., Pau E., Chang N.H., Wither J.E., An intrinsic B-cell defect supports autoimmunity in New Zealand black chromosome 13 congenic mice, Eur. J. Immunol., 2011, 41, 527-536[Crossref]
  • [69] Poltorak A., He X., Smirnova I., Liu M.Y., Van Huffel C., Du X., et al., Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene, Science, 1998, 282, 2085-2088
  • [70] Kurt-Jones E.A., Popova L., Kwinn L., Haynes L.M., Jones L.P., Tripp R.A., et al., Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus, Nat. Immunol., 2000, 1, 398-401
  • [71] Rassa J.C., Meyers J.L., Zhang Y., Kudaravalli R., Ross S.R., Murine retroviruses activate B cells via interaction with toll-like receptor 4. Proc Natl Acad Sci U S A 99:2281-2286.
  • [72] Ohashi, K., Burkart, V., Flohe, S., and Kolb, H. 2000. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex, J. Immunol., 2002, 164, 558-561
  • [73] Termeer C., Benedix F., Sleeman J., Fieber C., Voith U., Ahrens T., et al., Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4, J. Exp. Med., 2002, 195, 99-111
  • [74] Biragyn A., Ruffini P.A., Leifer C.A., Klyushnenkova E., Shakhov A., Chertov O., et al., Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2, Science, 2002, 298, 1025-1029
  • [75] Hijiya N., Miyake K., Akashi S., Matsuura K., Higuchi Y., Yamamoto S., Possible involvement of toll-like receptor 4 in endothelial cell activation of larger vessels in response to lipopolysaccharide, Pathobiology, 2002, 70, 18-25
  • [76] Erridge C., Burdess A., Jackson A.J., Murray C., Riggio M., Lappin D., et al., Vascular cell responsiveness to Toll-like receptor ligands in carotid atheroma, Eur. J. Clin. Invest., 2008, 38, 713-720[Crossref]
  • [77] Stewart C.R., Stuart L.M., Wilkinson K., van Gils J.M., Deng J., Halle A., et al., CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer, Nat. Immunol., 2010, 11, 155-161[Crossref]
  • [78] Lu Y.C., Yeh W.C., Ohashi P.S., LPS/TLR4 signal transduction pathway, Cytokine, 2008, 42, 145-151
  • [79] Tobias P.S., Soldau K., Ulevitch R.J., Isolation of a lipopolysaccharide-binding acute phase reactant from rabbit serum, J. Exp. Med., 1986, 164, 777-793
  • [80] Wright S.D., Tobias P.S., Ulevitch R.J., Ramos R.A., Lipopolysaccharide (LPS) binding protein opsonizes LPS-bearing particles for recognition by a novel receptor on macrophages, J. Exp. Med., 1989, 170, 1231-1241
  • [81] Wright S.D., Ramos R.A., Tobias P.S., Ulevitch R.J., Mathison J.C., CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein, Science, 1990, 249, 1431-1433
  • [82] Shimazu R., Akashi,S., Ogata H., Nagai Y., Fukudome K., Miyake K., et al., MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J. Exp. Med., 1999, 189, 1777-1782
  • [83] Yamamoto M., Sato S., Hemmi H., HoshinoK., Kaisho T., Sanjo H., et al., Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway, Science, 2003, 301, 640-643
  • [84] Yamamoto M., Sato S., Hemmi H., Uematsu S., Hoshino K., Kaisho T., et al., TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway, Nat. Immunol., 2003, 4, 1144-1150
  • [85] Qian C., Cao X., Regulation of Toll-like receptor signaling pathways in innate immune responses, Ann. N.Y. Acad. Sci., 2013, 1283, 67-74
  • [86] Kawai T., Adachi O., Ogawa T., Takeda K., Akira S., Unresponsiveness of MyD88-deficient mice to endotoxin, Immunity, 1999, 11, 115-122[Crossref]
  • [87] Oganesyan G., Saha S.K., Guo B., He J.Q., Shahangian A., Zarnegar B., et al., Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response, Nature, 2006, 439, 208-211
  • [88] Rakoff-Nahoum S., Paglino J., Eslami-Varzaneh F., Edberg S., Medzhitov R., Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis, Cell, 2004, 118, 229-241[Crossref]
  • [89] Sato S., Nomura F., Kawai T., Takeuchi O., Muhlradt P.F., Takeda K., et al., Synergy and cross-tolerance between toll-like receptor (TLR) 2- and TLR4-mediated signaling pathways, J. Immunol., 2000, 165, 7096-7101
  • [90] Cuschieri J., Billigren J., Maier R.V., Endotoxin tolerance attenuates LPS-induced TLR4 mobilization to lipid rafts: a condition reversed by PKC activation, J. Leukoc. Biol., 2006, 80, 1289-1297
  • [91] Albrecht V., Hofer T.P., Foxwell B., Frankenberger M., Ziegler-Heitbrock L., Tolerance induced via TLR2 and TLR4 in human dendritic cells: role of IRAK-1, BMC Immunol., 2008, http://www.biomedcentral.com/1471-2172/9/69
  • [92] Yoza B.K., Hu J.Y., Cousart S.L., Forrest L.M., McCall C.E., Induction of RelB participates in endotoxin tolerance, J. Immunol., 2006, 177, 4080-4085
  • [93] Du X., Poltorak A., Wei Y., Beutler B., Three novel mammalian toll-like receptors: gene structure, expression, and evolution, Eur. Cytokine Netw., 2000, 11, 362-371
  • [94] Kawai T., Akira S., Toll-like receptor and RIG-I-like receptor signaling, Ann. N.Y. Acad. Sci., 2008, 1143, 1-20
  • [95] Hornung V., Guenthner-Biller M., Bourquin C., Ablasser A., Schlee M., Uematsu S., et al., Sequence-specific potent induction of IFN-α by short interfering RNA in plasmacytoid dendritic cells through TLR7, Nat. Med., 2005, 11, 263-270[Crossref]
  • [96] Hemmi H., Takeuchi O., Kawai T., Kaisho T., Sato S., Sanjo H., et al., A Toll-like receptor recognizes bacterial DNA, Nature, 2000, 408, 740-745
  • [97] Bafica A., Scanga C.A., Feng C.G., Leifer C., Cheever A., Sher A., TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis, J. Exp. Med., 2005, 202, 1715-1724
  • [98] Gomes M.T., Campos P.C., de Almeida L.A., Oliveira F.S., Costa M.M., Marim F.M., et al., The role of innate immune signals in immunity to Brucella abortus, Front. Cell. Infect. Microbiol., 2012, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3480720/
  • [99] Anderson A.E., Worku M.L., Khamri W., Bamford,K.B., Walker M.M., Thursz M.R., TLR9 polymorphisms determine murine lymphocyte responses to Helicobacter: results from a genome-wide scan, Eur. J. Immunol., 2007, 37, 1548-1561[Crossref]
  • [100] Diebold S.S., Kaisho T., Hemmi H., Akira S., Reis e Sousa C., Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA, Science, 2004, 303, 1529-1531
  • [101] Leadbetter E.A., Rifkin I.R., Hohlbaum A.M., Beaudette B.C., Shlomchik M.J., Marshak-Rothstein A., Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors, Nature, 2002, 416, 603-607
  • [102] Viglianti G.A., Lau C.M., Hanley T.M., Miko B.A., Shlomchik M.J., Marshak-Rothstein A., Activation of autoreactive B cells by CpG dsDNA, Immunity, 2003, 19, 837-847[Crossref]
  • [103] Krieg A.M., A role for Toll in autoimmunity, Nat. Immunol. 2002, 3, 423-424[Crossref]
  • [104] Baccala R., Hoebe K., Kono D.H., Beutler B., Theofilopoulos A.N., TLR-dependent and TLR-independent pathways of type I interferon induction in systemic autoimmunity, Nat. Med., 2007, 13, 543-551[Crossref]
  • [105] Boasso A., Herbeuval J.P., Hardy A.W., Anderson S.A., Dolan M.J., Fuchs D., et al., HIV inhibits CD4+ T-cell proliferation by inducing indoleamine 2,3-dioxygenase in plasmacytoid dendritic cells, Blood, 2007, 109, 3351-3359
  • [106] Planes R., Bahraoui E., HIV-1 Tat protein induces the production of IDO in human monocyte derived-dendritic cells through a direct mechanism: effect on T cells proliferation, PLoS One, 2013, http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0074551
  • [107] de Kivit S., Tobin M.C., Forsyth C.B., Keshavarzian A., Landay A.L., Regulation of Intestinal Immune Responses through TLR Activation: Implications for Pro- and Prebiotics, Front. Immunol., 2014, http://journal.frontiersin.org/Journal/10.3389/fimmu.2014.00060/abstract
  • [108] Billiau A., Matthys P., Modes of action of Freund’s adjuvants in experimental models of autoimmune diseases, J. Leukoc. Biol., 2001, 70, 849-860
  • [109] Tian B., Hao J., Zhang Y., Tian L., Yi H., O’Brien T.D., et al., Upregulating CD4+CD25+FOXP3+ regulatory T cells in pancreatic lymph nodes in diabetic NOD mice by adjuvant immunotherapy, Transplantation, 2009, 87, 198-206[Crossref]
  • [110] King C., Ilic A., Koelsch K., Sarvetnick N., Homeostatic expansion of T cells during immune insufficiency generates autoimmunity, Cell, 2004, 117, 265-277[Crossref]
  • [111] Mills K.H. TLR-dependent T cell activation in autoimmunity, Nat. Rev. Immunol., 2011, 11, 807-822
  • [112] Hayaishi O., Rothberg S., Mehler A.H., Saito Y. Studies on oxygenases; enzymatic formation of kynurenine from tryptophan, J. Biol. Chem., 1957, 229, 889-896
  • [113] Munn D.H., Zhou M., Attwood J.T., Bondarev I., Conway S.J., Marshall B., et al., Prevention of allogeneic fetal rejection by tryptophan catabolism, Science, 1998, 281, 1191-1193
  • [114] Pallotta M.T., Orabona C., Volpi C., Vacca C., Belladonna M.L., Bianchi R., et al., Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells, Nat. Immunol., 2011, 12, 870-878[Crossref]
  • [115] Grohmann U., Orabona C., Fallarino F., Vacca C., Calcinaro F., Falorni A., et al., CTLA-4-Ig regulates tryptophan catabolism in vivo, Nat. Immunol., 2002, 3 1097-1101[Crossref]
  • [116] Grohmann U., Bianchi R., Belladonna M.L., Silla S., Fallarino F., Fioretti M.C., et al., IFN-gamma inhibits presentation of a tumor/self peptide by CD8α− dendritic cells via potentiation of the CD8α+ subset, J. Immunol., 2000, 165, 1357-1363
  • [117] Mezrich J.D., Fechner J.H., Zhang X., Johnson B.P., Burlingham W.J., Bradfield C.A., An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells, J. Immunol., 2010, 185, 3190-3198
  • [118] Quintana F.J., The aryl hydrocarbon receptor: a molecular pathway for the environmental control of the immune response, Immunology, 2013, 138, 183-189
  • [119] Grohmann U., Fallarino F., Bianchi R., Orabona C., Vacca C., Fioretti M.C., et al., A defect in tryptophan catabolism impairs tolerance in nonobese diabetic mice, J. Exp. Med. 2003, 198, 153-160
  • [120] Platten M., Ho P.P., Youssef S., Fontoura P., Garren H., Hur E.M., et al., Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite, Science, 2005, 310, 850-855
  • [121] Chen W., IDO: more than an enzyme, Nat. Immunol., 2011, 12, 809-811[Crossref]
  • [122] Heitger A., Regulation of expression and function of IDO in human dendritic cells, Curr. Med. Chem., 2011, 18, 2222-2233[Crossref]
  • [123] Orabona C., Grohmann U., Indoleamine 2,3-dioxygenase and regulatory function: tryptophan starvation and beyond, Methods Mol. Biol., 2011, 677, 269-280
  • [124] Konan K.V., Taylor M.W., Importance of the two interferon-stimulated response element (ISRE) sequences in the regulation of the human indoleamine 2,3-dioxygenase gene. J. Biol. Chem. 1996, 271, 19140-19145
  • [125] Chon S.Y., Hassanain H.H., Gupta S.L., Cooperative role of interferon regulatory factor 1 and p91 (STAT1) response elements in interferon-gamma-inducible expression of human indoleamine 2,3-dioxygenase gene, J. Biol. Chem., 1996, 271, 17247-17252
  • [126] Robinson C.M., Hale P.T., Carlin J.M., The role of IFN-γ and TNF-α-responsive regulatory elements in the synergistic induction of indoleamine dioxygenase, J. Interferon Cytokine Res., 2005, 25, 20-30
  • [127] Fallarino F., Asselin-Paturel C., Vacca C., Bianchi R., Gizzi S., Fioretti M.C., et al., Murine plasmacytoid dendritic cells initiate the immunosuppressive pathway of tryptophan catabolism in response to CD200 receptor engagement, J. Immunol., 2004, 173, 3748-3754
  • [128] Belladonna M.L., Volpi C., Bianchi R., Vacca C., Orabona C., Pallotta M.T., et al., Cutting edge: Autocrine TGF-β sustains default tolerogenesis by IDO-competent dendritic cells, J. Immunol., 2008, 181, 5194-5198
  • [129] Du M.X., Sotero-Esteva W.D., Taylor M.W., Analysis of transcription factors regulating induction of indoleamine 2,3-dioxygenase by IFN-γ. J. Interferon Cytokine Res., 2000, 20, 133-142
  • [130] Balachandran V.P., Cavnar M.J., Zeng S., Bamboat Z.M., Ocuin L.M., Obaid H., et al., Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido, Nat .Med., 2011, 17, 1094-1100[Crossref]
  • [131] Litzenburger U.M., Opitz C.A., Sahm F., Rauschenbach K.J., Trump S., Winter M., et al., Constitutive IDO expression in human cancer is sustained by an autocrine signaling loop involving IL-6, STAT3 and the AHR, Oncotarget, 2014, 5, 1038-1051
  • [132] Park M.K., Oh H.J., Heo Y.M., Park E.M., Cho M.L., Kim H.Y, et al., Myeloid differentiation primary response protein 88 blockade upregulates indoleamine 2,3-dioxygenase expression in rheumatoid synovial fibroblasts, Exp. Mol. Med., 2011, 43, 446-454[Crossref]
  • [133] Hissong B.D., Carlin J.M., Potentiation of interferon-induced indoleamine 2,3-dioxygenase mRNA in human mononuclear phagocytes by lipopolysaccharide and interleukin-1, J Interferon Cytokine Res., 1997, 17, 387-393
  • [134] Connor T.J., Starr N., O’Sullivan J.B., Harkin A., Induction of indolamine 2,3-dioxygenase and kynurenine 3-monooxygenase in rat brain following a systemic inflammatory challenge: a role for IFN-gamma?, Neurosci. Lett., 2008, 441, 29-34
  • [135] Fujigaki H., Saito K., Fujigaki S., Takemura M., Sudo K., Ishiguro H., et al., The signal transducer and activator of transcription 1α and interferon regulatory factor 1 are not essential for the induction of indoleamine 2,3-dioxygenase by lipopolysaccharide: involvement of p38 mitogen-activated protein kinase and nuclear factor-κB pathways, and synergistic effect of several proinflammatory cytokines, J. Biochem., 2006, 139, 655-662
  • [136] Lanier L.L., Bakker A.B., The ITAM-bearing transmembrane adaptor DAP12 in lymphoid and myeloid cell function, Immunol. Today, 2000, 21, 611-614[Crossref]
  • [137] Peng Q., Long C.L., Malhotra S., Humphrey M.B., A physical interaction between the adaptor proteins DOK3 and DAP12 is required to inhibit lipopolysaccharide signaling in macrophages, Sci. Signal., 2013, 6:ra72[Crossref]
  • [138] Ito H., Hamerman J.A., TREM-2, triggering receptor expressed on myeloid cell-2, negatively regulates TLR responses in dendritic cells, Eur. J. Immunol., 2012, 42, 176-185[Crossref]
  • [139] Donatelli S.S., Zhou J.M., Gilvary D.L., Eksioglu E.A., Chen X., Cress W.D., et al., TGF-β-inducible microRNA-183 silences tumor-associated natural killer cells, Proc. Natl. Acad. Sci. U.S.A., 2014, 111, 4203-4208[Crossref]
  • [140] Jeffery C.J., Moonlighting proteins--an update, Mol. Biosyst., 2009, 5, 345-350[Crossref]
  • [141] Fazekas de St Groth B., The evolution of self-tolerance: a new cell arises to meet the challenge of self-reactivity, Immunol. Today, 1998, 19, 448-454[Crossref]
  • [142] Orabona C., Pallotta M.T., Volpi C., Fallarino F., Vacca C., Bianchi R., et al., SOCS3 drives proteasomal degradation of indoleamine 2,3-dioxygenase (IDO) and antagonizes IDO-dependent tolerogenesis, Proc. Natl. Acad. Sci. U.S.A., 2008, 105, 20828-20833[Crossref]
  • [143] Yuasa H.J., Takubo M., Takahashi A., Hasegawa T., Noma H., Suzuki T., Evolution of vertebrate indoleamine 2,3-dioxygenases, J. Mol. Evol., 2007, 65, 705-714[Crossref]
  • [144] Daeron M., Jaeger S., Du Pasquier L., Vivier E., Immunoreceptor tyrosine-based inhibition motifs: a quest in the past and future, Immunol. Rev., 2008, 224, 11-43
  • [145] Orabona C., Pallotta M.T., Grohmann U., Different partners, opposite outcomes: a new perspective of the immunobiology of indoleamine 2,3-dioxygenase, Mol. Med., 2012, 18, 834-842
  • [146] Yu C.C., Mamchak A.A., DeFranco A.L., Signaling mutations and autoimmunity, Curr. Dir. Autoimmun., 2003, 6, 61-88
  • [147] Fukushima A., Yamaguchi T., Ishida W., Fukata K., Udaka K., Ueno H., Mice lacking the IFN-γ receptor or fyn develop severe experimental autoimmune uveoretinitis characterized by different immune responses, Immunogenetics, 2005, 57, 337-343[Crossref]
  • [148] Takahashi T., Yagi T., Kakinuma S., Kurokawa A., Okada T., Takatsu K., et al., Suppression of autoimmune disease and of massive lymphadenopathy in MRL/Mp-lpr/lpr mice lacking tyrosine kinase Fyn (p59fyn), J. Immunol., 1997, 159, 2532-2541
  • [149] An H., Hou J., Zhou J., Zhao W., Xu H., Zheng Y., et al., Phosphatase SHP-1 promotes TLR- and RIG-I-activated production of type I interferon by inhibiting the kinase IRAK1, Nat. Immunol., 2008, 9, 542-550[Crossref]
  • [150] Kimura A., Naka T., Muta T., Takeuchi, O., Akira, S., Kawase, I., et al., Suppressor of cytokine signaling-1 selectively inhibits LPS-induced IL-6 production by regulating JAK-STAT, Proc. Natl. Acad. Sci. U.S.A., 2005, 102, 17089-17094
  • [151] Kuwata H., Watanabe Y., Miyoshi H., Yamamoto M., Kaisho T., Takeda K., et al., IL-10-inducible Bcl-3 negatively regulates LPS-induced TNF-α production in macrophages, Blood, 2003, 102, 4123-4129[Crossref]
  • [152] Hacker H., Karin M., Regulation and function of IKK and IKK-related kinases, Sci STKE, 2006, 2006:re13
  • [153] Samstein R.M., Josefowicz S.Z., Arvey A., Treuting P.M., Rudensky A.Y., Extrathymic generation of regulatory T cells in placental mammals mitigates maternal-fetal conflict, Cell, 2012, 150,29-38
  • [154] Baeuerle P.A., Henkel T., Function and activation of NF-κB in the immune system, Annu. Rev. Immunol., 1994, 12, 141-179[Crossref]
  • [155] Siebenlist U., Franzoso G., Brown K., Structure, regulation and function of NF-κB, Annu. Rev. Cell. Biol., 1994, 10, 405-455[Crossref]
  • [156] Kawai T., Akira S., Signaling to NF-κB by Toll-like receptors, Trends Mol. Med., 2007, 13, 460-469[Crossref]
  • [157] Bonizzi G., Karin M., The two NF-κB activation pathways and their role in innate and adaptive immunity, Trends Immunol., 2004, 25, 280-288[Crossref]
  • [158] Karin M., Ben-Neriah Y., Phosphorylation meets ubiquitination: the control of NF-κB activity, Annu. Rev. Immunol., 2000, 18, 621-663[Crossref]
  • [159] Dejardin E., The alternative NF-κB pathway from biochemistry to biology: pitfalls and promises for future drug development, Biochem. Pharmacol., 2006, 72, 1161-1179
  • [160] Vallabhapurapu S., Matsuzawa A., Zhang W., Tseng P.H., Keats J.J., Wang H., et al., Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-κB signaling, Nat. Immunol., 2008, 9, 1364-1370
  • [161] Sun S.C., The noncanonical NF-κB pathway, Immunol. Rev., 2012, 246, 125-140
  • [162] Tas S.W., Vervoordeldonk M.J., Hajji N., Schuitemaker J.H., van der Sluijs K.F., May M.J., et al., Noncanonical NF-κB signaling in dendritic cells is required for indoleamine 2,3-dioxygenase (IDO) induction and immune regulation, Blood, 2007, 110, 1540-1549[Crossref]
  • [163] Hoshino K., Sugiyama T., Matsumoto M., Tanaka T., Saito M., Hemmi H., et al., IκB kinase-α is critical for interferon-α production induced by Toll-like receptors 7 and 9, Nature, 2006, 440, 949-953
  • [164] Romani L., Bistoni F., Perruccio K., Montagnoli C., Gaziano R., Bozza S., et al., Thymosin α1 activates dendritic cell tryptophan catabolism and establishes a regulatory environment for balance of inflammation and tolerance, Blood, 2006, 108, 2265-2274[Crossref]
  • [165] Blank U., Launay P., Benhamou M., Monteiro R.C., Inhibitory ITAMs as novel regulators of immunity, Immunol. Rev., 2009, 232, 59-71
  • [166] Arbibe L., Mira J.P., Teusch, N., Kline, L., Guha, M., Mackman, N., et al., Toll-like receptor 2-mediated NF-κB activation requires a Rac1-dependent pathway, Nat. Immunol., 2000, 1, 533-540
  • [167] Medvedev A.E., Piao W., Shoenfelt J., Rhee S.H., Chen H., Basu S., et al., Role of TLR4 tyrosine phosphorylation in signal transduction and endotoxin tolerance, J. Biol. Chem., 2007, 282, 16042-16053
  • [168] Lin Y.C., Huang D.Y., Chu C.L., Lin Y.L., Lin W.W., The tyrosine kinase Syk differentially regulates Toll-like receptor signaling downstream of the adaptor molecules TRAF6 and TRAF3, Sci. Signal., 2013, 6:ra71
  • [169] Smolinska M.J., Horwood N.J., Page T.H., Smallie T., Foxwell B.M, Chemical inhibition of Src family kinases affects major LPS-activated pathways in primary human macrophages, Mol. Immunol., 2008, 45, 990-1000[Crossref]
  • [170] Smolinska M.J., Page T.H., Urbaniak A.M., Mutch B.E., Horwood N.J., Hck tyrosine kinase regulates TLR4-induced TNF and IL-6 production via AP-1, J. Immunol., 2011, 187, 6043-6051
  • [171] Lamagna C., Hu Y., Defranco A.L., Lowell C.A, B cell-specific loss of lyn kinase leads to autoimmunity, J. Immunol., 2014, 192, 919-928
  • [172] Chong Z.Z., Maiese K., The Src homology 2 domain tyrosine phosphatases SHP-1 and SHP-2: diversified control of cell growth, inflammation, and injury, Histol. Histopathol., 2007, 22, 1251-1267
  • [173] Neel B.G., Gu H., Pao L., The ‘Shp’ing news: SH2 domain-containing tyrosine phosphatases in cell signaling, Trends Biochem. Sci., 2003, 28, 284-293
  • [174] Zhang Z., Jimi E., Bothwell A.L., Receptor activator of NF-κB ligand stimulates recruitment of SHP-1 to the complex containing TNFR-associated factor 6 that regulates osteoclastogenesis, J. Immunol., 2003, 171, 3620-3626[Crossref]
  • [175] An H., Zhao W., Hou J., Zhang Y., Xie Y., Zheng Y., et al., SHP-2 phosphatase negatively regulates the TRIF adaptor protein-dependent type I interferon and proinflammatory cytokine production, Immunity, 2006, 25, 919-928
  • [176] Das S., Pandey K., Kumar A., Sardar A.H., Purkait B., Kumar M., et al., , TGF-β1 re-programs TLR4 signaling in L. donovani infection: enhancement of SHP-1 and ubiquitin-editing enzyme A20, Immunol. Cell. Biol., 2012, 90, 640-654
  • [177] Hacker H., Tseng P.H., Karin M., Expanding TRAF function: TRAF3 as a tri-faced immune regulator, Nat. Rev. Immunol., 2011, 11, 457-468[Crossref]
  • [178] Xie P., TRAF molecules in cell signaling and in human diseases, J. Mol. Signal., 2013, http://www.jmolecularsignaling.com/content/8/1/7
  • [179] Soumelis V., Liu Y.J., From plasmacytoid to dendritic cell: morphological and functional switches during plasmacytoid pre-dendritic cell differentiation, Eur. J. Immunol., 2006, 36, 2286-2292[Crossref]
  • [180] Ozato K., Tailor P., Kubota T., The interferon regulatory factor family in host defense: mechanism of action, J. Biol. Chem. 2007, 282, 20065-20069
  • [181] Moynagh P.N., TLR signalling and activation of IRFs: revisiting old friends from the NF-κB pathway, Trends Immunol., 2005, 26, 469-476[Crossref]
  • [182] Honda K., Yanai H., Negish, H., Asagiri M., Sato M., Mizutani T., et al., IRF-7 is the master regulator of type-I interferon-dependent immune responses, Nature, 2005, 434, 772-777
  • [183] Sakaguchi S., Negishi H., Asagiri M., Nakajima C., Mizutani T., Takaoka A., et al., Essential role of IRF-3 in lipopolysaccharide-induced interferon-β gene expression and endotoxin shock, Biochem. Biophys. Res. Commun., 2003, 306, 860-866
  • [184] Yasuda K., Richez C., Maciasze J.W., Agrawal N., Akira S., Marshak-Rothstein A., et al., Murine dendritic cell type I IFN production induced by human IgG-RNA immune complexes is IFN regulatory factor (IRF)5 and IRF7 dependent and is required for IL-6 production, J. Immunol., 2007, 178, 6876-6885
  • [185] Negishi H., Ohba Y., Yanai H., Takaoka A., Honma K., Yui K., et al., Negative regulation of Toll-like-receptor signaling by IRF-4, Proc. Natl. Acad. Sci. U.S.A., 2005, 102, 15989-15994
  • [186] Zhao J., Kong H.J., Li H., Huan, B., Yang M., Zhu C., et al., IRF-8/interferon (IFN) consensus sequence-binding protein is involved in Toll-like receptor (TLR) signaling and contributes to the cross-talk between TLR and IFN-γ signaling pathways, J. Biol. Chem., 2006, 281, 10073-10080
  • [187] Tsujimura H., Tamura T., Kong H.J., Nishiyama A., Ishii K.J., Klinman D.M., et al., 2004, Toll-like receptor 9 signaling activates NF-κB through IFN regulatory factor-8/IFN consensus sequence binding protein in dendritic cells, J. Immunol., 172, 6820-6827
  • [188] Hambleton S., Salem S., Bustamante J., Bigley V., Boisson-Dupuis S., Azevedo, J., et al., IRF8 mutations and human dendritic-cell immunodeficiency, N. Engl. J. Med., 2011, 365, 127-138
  • [189] Orabona C., Puccetti P., Vacca C., Bicciato S., Luchini A., Fallarino F., et al., Toward the identification of a tolerogenic signature in IDO-competent dendritic cells, Blood, 2006, 107, 2846-2854
  • [190] Vada, O., Burke J.E., Zhang X., Berndt A., Williams R.L., Structural basis for activation and inhibition of class I phosphoinositide 3-kinases, Sci. Signal., 2011, 4:re2
  • [191] Katso R., Okkenhaug K., Ahmadi K., White S., Timms J., Waterfield M.D., Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer, Annu. Rev. Cell. Dev. Biol., 2001, 17, 615-675[Crossref]
  • [192] Lawlor M.A., Alessi D.R., PKB/Akt: a key mediator of cell proliferation, survival and insulin responses?, J. Cell. Sci., 2001, 114, 2903-2910
  • [193] Weichhart T., Saemann M.D., The PI3K/Akt/mTOR pathway in innate immune cells: emerging therapeutic applications, Ann. Rheum. Dis., 2008, 67 Suppl 3, iii70-74
  • [194] Ojaniemi, M., Glumoff, V., Harju, K., Liljeroos, M., Vuori, K., and Hallman, M. 2003. Phosphatidylinositol 3-kinase is involved in Toll-like receptor 4-mediated cytokine expression in mouse macrophages. Eur J Immunol 33:597-605.[Crossref]
  • [195] Alexander A.M., Crawford M., Bertera S., Rudert W.A., Takikawa O., Robbins P.D., et al., Indoleamine 2,3-dioxygenase expression in transplanted NOD Islets prolongs graft survival after adoptive transfer of diabetogenic splenocytes, Diabetes, 2002, 51, 356-365[Crossref]
  • [196] Guha M., Mackman N., The phosphatidylinositol 3-kinase-Akt pathway limits lipopolysaccharide activation of signaling pathways and expression of inflammatory mediators in human monocytic cells, J. Biol. Chem., 2002, 277, 32124-32132
  • [197] Androulidaki A., Iliopoulos D., Arranz A., Doxaki C., Schworer S., Zacharioudaki V., et al., The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs, Immunity, 2009, 31, 220-231
  • [198] Weichhart T., Costantino G., Poglitsch M., Rosner M., Zeyda M., Stuhlmeier K.M., et al., The TSC-mTOR signaling pathway regulates the innate inflammatory response, Immunity, 2008, 29, 565-577[Crossref]
  • [199] Fruman D.A., Phosphoinositide 3-kinase and its targets in B-cell and T-cell signaling, Curr. Opin. Immunol., 2004, 16, 314-320[Crossref]
  • [200] Diaz-Guerra M.J., Castrillo A., Martin-Sanz P., Bosca L., Negative regulation by protein tyrosine phosphatase of IFN-γ-dependent expression of inducible nitric oxide synthase, J. Immunol., 1999, 162, 6776-6783
  • [201] Li X., Tupper J.C., Bannerman D.D., Winn R.K., Rhodes C.J., Harlan J.M., Phosphoinositide 3 kinase mediates Toll-like receptor 4-induced activation of NF-κB in endothelial cells, Infect. Immun., 2003, 71, 4414-4420
  • [202] Fallarino F., Bianchi R., Orabona C., Vacca C., Belladonna M.L., Fioretti M.C., et al., CTLA-4-Ig activates forkhead transcription factors and protects dendritic cells from oxidative stress in nonobese diabetic mice, J. Exp. Med., 2004, 200, 1051-1062
  • [203] Koponen P., Vuononvirta J., Nuolivirta K., Helminen M., He Q., Korppi M., The association of genetic variants in toll-like receptor 2 subfamily with allergy and asthma after hospitalization for bronchiolitis in infancy, Pediatr. Infect. Dis. J., 2014, 33, 463-466
  • [204] Leah E., Rheumatoid arthritis: spontaneous release of cytokines from synovial tissue is blocked by anti-TLR2, Nat. Rev. Rheumatol., 2011, 7, 254[Crossref]
  • [205] Schrijver I.A., van Meurs M., Melief M.J., Wim Ang C., Buljevac D., Ravid R., et al., Bacterial peptidoglycan and immune reactivity in the central nervous system in multiple sclerosis, Brain, 2001, 124, 1544-1554
  • [206] Correale J., Farez M.F., Does helminth activation of toll-like receptors modulate immune response in multiple sclerosis patients?, Front. Cell. Infect. Microbiol., 2012, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3426839/
  • [207] Eder W., Klimecki W., Yu L., von Mutius E., Riedler J., Braun-Fahrlander C., et al., Toll-like receptor 2 as a major gene for asthma in children of European farmers, J. Allergy Clin. Immunol., 2004, 113, 482-488
  • [208] Alderton G.K., Signalling: New roles for TLR2, Nat. Rev. Immunol., 2012, 12, 810-811[Crossref]
  • [209] Tye H., Kennedy C.L., Najdovska M., McLeod L., McCormack, W., Hughes N., et al., STAT3-driven upregulation of TLR2 promotes gastric tumorigenesis independent of tumor inflammation, Cancer Cell., 2012, 22, 466-478[Crossref]
  • [210] Yang H.Z., Cui B., Liu H.Z., Mi S., Yan J., Yan H.M., et al., Blocking TLR2 activity attenuates pulmonary metastases of tumor PLoS One, 2009, http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0006520
  • [211] Hernandez J.C., Stevenson M., Latz E., Urcuqui-Inchima S., HIV type 1 infection up-regulates TLR2 and TLR4 expression and function in vivo and in vitro, AIDS Res. Hum. Retroviruses, 2012, 28, 1313-1328
  • [212] Ding J., Chang T.L., TLR2 activation enhances HIV nuclear import and infection through T cell activation-independent and -dependent pathways, J. Immunol., 2012, 188, 992-1001[Crossref]
  • [213] Nazli A., Kafka J.K., Ferreira V.H., Anipindi V., Mueller K., Osborne B.J., et al., HIV-1 gp120 induces TLR2- and TLR4-mediated innate immune activation in human female genital epithelium, J. Immunol., 2013, 191, 4246-4258
  • [214] Brentano F., Schorr O., Gay R.E., Gay S., Kyburz D., RNA released from necrotic synovial fluid cells activates rheumatoid arthritis synovial fibroblasts via Toll-like receptor 3, Arthritis Rheum., 2005, 52, 2656-2665[Crossref]
  • [215] Roelofs M.F., Joosten L.A., Abdollahi-Roodsaz S., van Lieshout A.W., Sprong T., van den Hoogen F.H., et al., The expression of toll-like receptors 3 and 7 in rheumatoid arthritis synovium is increased and costimulation of toll-like receptors 3, 4, and 7/8 results in synergistic cytokine production by dendritic cells, Arthritis Rheum., 2005, 52, 2313-2322
  • [216] Taylor K.R., Trowbridge J.M., Rudisill J.A., Termeer C.C., Simon J.C., Gallo R.L., Hyaluronan fragments stimulate endothelial recognition of injury through TLR4, J. Biol. Chem., 2004, 279, 17079-17084
  • [217] Dhaouadi T., Sfar I., Haouami,Y., Abdelmoula L., Turki S., Hassine L.B., et al., Polymorphisms of Toll-like receptor-4 and CD14 in systemic lupus erythematosus and rheumatoid arthritis, Biomark. Res., 2013, http://www.biomarkerres.org/content/1/1/20
  • [218] Roelofs M.F., Boelens W.C., Joosten L.A., Abdollahi-Roodsaz S., Geurts J., Wunderink L.U., et al., Identification of small heat shock protein B8 (HSP22) as a novel TLR4 ligand and potential involvement in the pathogenesis of rheumatoid arthritis, J. Immunol., 2006, 176, 7021-7027
  • [219] Yuan X., Zhou Y., Wang W., Li J., Xie G., Zhao Y., et al., Activation of TLR4 signaling promotes gastric cancer progression by inducing mitochondrial ROS production, Cell Death Dis., 2013, http://www.nature.com/cddis/journal/v4/n9/full/cddis2013334a.html
  • [220] Tang X., Zhu Y., TLR4 signaling promotes immune escape of human colon cancer cells by inducing immunosuppressive cytokines and apoptosis resistance, Oncol. Res. 2012, 20, 15-24[Crossref]
  • [221] Chamberlain N.D., Vila O.M., Volin M.V., Volkov S., Pope R.M., Swedler W., et al., TLR5, a novel and unidentified inflammatory mediator in rheumatoid arthritis that correlates with disease activity score and joint TNF-α levels, J. Immunol., 2012, 189, 475-483
  • [222] Tantisira K., Klimecki W.T., Lazarus R., Palmer L.J., Raby B.A., Kwiatkowski D.J., et al., Toll-like receptor 6 gene (TLR6): single-nucleotide polymorphism frequencies and preliminary association with the diagnosis of asthma, Genes Immun., 2004, 5, 343-346
  • [223] Wang C.M., Chang S.W., Wu Y.J., Lin J.C., Ho H.H., Chou T.C., et al., Genetic variations in Toll-like receptors (TLRs 3/7/8) are associated with systemic lupus erythematosus in a Taiwanese population, Sci. Rep. 2014, http://www.nature.com/srep/2014/140121/srep03792/full/srep03792.html
  • [224] Barrat F.J., Meeker T., Gregorio J., Chan J.H., Uematsu S., Akira S., et al., Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus, J. Exp. Med., 2005, 202, 1131-1139
  • [225] Cherfils-Vicini J., Platonova S., Gillard M., Laurans L., Validire P., Caliandro R., et al., Triggering of TLR7 and TLR8 expressed by human lung cancer cells induces cell survival and chemoresistance, J. Clin. Invest., 2010, 120, 1285-1297
  • [226] Ochi A., Graffeo C.S., Zambirinis C.P., Rehman A., Hackman M., Fallon N., et al., 2012, Toll-like receptor 7 regulates pancreatic carcinogenesis in mice and humans, J. Clin. Invest., 122, 4118-4129
  • [227] Lepelley A., Louis S., Sourisseau M., Law H.K., Pothlichet J., Schilte C., et al., Innate sensing of HIV-infected cells, PLoS Pathog., 2011, http://www.plospathogens.org/article/info%3Adoi%2F10.1371%2Fjournal.ppat.1001284[Crossref]
  • [228] Simmons R.P., Scully E.P., Groden E.E., Arnold K.B., Chang J.J., Lane K., et al., HIV-1 infection induces strong production of IP-10 through TLR7/9-dependent pathways, AIDS, 2013, 27, 2505-2517
  • [229] Sacre S.M., Lo A., Gregory B., Simmonds R.E., Williams L., Feldmann M., Inhibitors of TLR8 reduce TNF production from human rheumatoid synovial membrane cultures, J. Immunol., 2008, 181, 8002-8009
  • [230] Gringhuis S.I., van der Vlist M., van den Berg L.M., den Dunnen J., Litjens M., Geijtenbeek T.B., HIV-1 exploits innate signaling by TLR8 and DC-SIGN for productive infection of dendritic cells, Nat. Immunol., 2010, 11, 419-426
  • [231] Schlaepfer E., Speck R.F., TLR8 activates HIV from latently infected cells of myeloid-monocytic origin directly via the MAPK pathway and from latently infected CD4+ T cells indirectly via TNF-α, J. Immunol., 2011, 186, 4314-4324
  • [232] Means T.K., Latz E., Hayashi F., Murali M.R., Golenbock D.T., Luster A.D., Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9, J. Clin. Invest., 2005, 115, 407-417
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_immun-2014-0001
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.