Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 1 | 1 |

Article title

Electron beam curing of CoFe2O4 nanoparticles

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
Three different synthesis methods were given
for the preparation of CoFe2O4 nanopowders. Electron
beam curing was also introduced for the enhancement
of the magnetization behavior. Main effect of synthesis
methods were discussed in terms of particle size (size
effects). X-ray diffraction (XRD), scanning electron
microscope (SEM) and SQUID methods were used for the
sample characterization. Analogies were observed as in
case of ferroelectric and semiconductor samples in the
framework of size driven phase transitions. It was shown
that quantum size effects in cobalt ferrite samples at
nanoscale can be explained by core-shell model.

Keywords

Publisher

Year

Volume

1

Issue

1

Physical description

Dates

online
23 - 12 - 2014
accepted
25 - 11 - 2014
received
3 - 10 - 2014

Contributors

author
  • Albert-Ludwigs-Universität
    Freiburg, Institut für Physikalische Chemie, Albertstrasse 21, 79104,
    Freiburg Germany

References

  • [1] Ostwald W., Die Welt der vernachlässigten DimensionenDresden: Steinkopy 1915.
  • [2] Feynmann RP, There is plenty of room at the bottom, Eng Sci.,1960, 23. 22.
  • [3] Stylios GK, There is plenty of room at the bottom, RP Feynman,Int. J. Cloth. Sci. Tech., 2013, 25, 336.
  • [4] Karch J, Birringer R. Nanocrystalline ceramics - possiblecandidates for net-shape forming, Ceram. Int. 1990, 16, 291.[Crossref]
  • [5] Kormann C, Bahnemann DW, Hoffmann MR., Environmentalphotochemistry - is iron-oxide (hematite) an activephotocatalyst - a comparative-study - alpha-Fe2O3, ZnO, TiO2. J.Photochem. Photobio. A, 1989, 48, 161.[Crossref]
  • [6] Ahmed SR, Ogale SB, Papaefthymiou GC, Ramesh R, KofinasP., Magnetic properties of CoFe2O4 nanoparticles synthesizedthrough a block copolymer nanoreactor route, Appl. Phys. Lett.,2002, 80, 1616.[Crossref]
  • [7] Artus M, Ammar S, Sicard L, Piquemal JY, Herbst F, Vaulay MJ, etal. Synthesis and magnetic properties of ferrimagnetic CoFe2O4nanoparticles embedded in an antiferromagnetic NiO matrix,Chem Mat., 2008, 20, 4861.
  • [8] Esir S, Baykal A, Sozeri H. Size Controlled Synthesis of CoFe2O4,Nanoparticles with Polyethylene Glycol, J. Superconduct. NovelMagnet., 2014, 27, 1309.
  • [9] Houshiar M, Zebhi F, Razi ZJ, Alidoust A, Askari Z. Synthesisof cobalt ferrite (CoFe2O4) nanoparticles using combustion,coprecipitation, and precipitation methods: A comparisonstudy of size, structural, and magnetic properties, J. Magnet.Magnetic Mater., 2014, 371,43.
  • [10] Lavorato GC, Lima E, Jr., Tobia D, Fiorani D, Troiani HE, ZyslerRD, et al., Size effects in bimagnetic CoO/ CoFe2O4 core/shellnanoparticles, Nanotech., 2014, 25, 355704.[Crossref]
  • [11] Liu C, Rondinone AJ, Zhang ZJ., Synthesis of magnetic spinelferrite CoFe2O4nanoparticles from ferric salt and characterizationof the size-dependent superparamagnetic properties,Pure Appl. Chem. 2000, 72, 37.
  • [12] Sharifi I, Shokrollahi H, Doroodmand MM, Safi R., Magneticand structural studies on CoFe2O4 nanoparticles synthesizedby co-precipitation, normal micelles and reverse micellesmethods, J. Magnet. Magnetic Mater., 2012, 324, 1854.
  • [13] Shi Y, Ding J, Yin H. CoFe2O4 nanoparticles prepared by themechanochemical method. J. Alloys Comp., 2000, 308, 290.
  • [14] Moumen N, Pileni MP, Control of the size of cobalt ferritemagnetic fluid, J. Phys. Chem., 1996, 100, 1867.[Crossref]
  • [15] Glasel HJ, Hartmann E, Mehnert R, Hirsch D, Bottcher R, HormesJ, Physico-chemical modification effects of nanoparticles inradiation-cured polymeric composites. Nucl. Inst. Meth. B,1999, 51, 200.[Crossref]
  • [16] Erdem E, Bottcher R, Semmelhack HC, Glasel HJ, Hartmann E,Hirsch D., Preparation of lead titanate ultrafine powders fromcombined polymerisation and pyrolysis route, J. Mater. Sci.,2003, 38, 3211.[Crossref]
  • [17] Erdem E, Matthes A, Boettcher R, Glaesel H-J, Hartmann ESize effects in ferroelectric PbTiO3 nanomaterials observedby multi-frequency electron paramagnetic resonancespectroscopy, J. Nanosci. Nanotech., 2008, 8, 702.[Crossref]
  • [18] Glasel HJ, Hartmann E, Hirsch D, Bottcher R, Klimm C, Michel D,et al., Preparation of barium titanate ultrafine powders from amonomeric metallo-organic precursor by combined solid-statepolymerisation and pyrolysis, J. Mater. Sci., 1999, 34, 2319.[Crossref]
  • [19] Rozenberg AS, Aleksandrova EI, Dzhardimalieva GI, KiryakovNV, Chizhov PE, Petinov, Preparation and reactivity ofmetal-containing monomers .The formation and thermaltransformations of nanometer-sized particles of cobalt ferriteupon the decomposition of coprecipitated FeIII and Co-IIacrylates, Russ. Chem. Bull., 1995, 44, 858.[Crossref]
  • [20] Böttcher R, Klimm C, Michel D, Semmelhack HC, VölkelG, Glasel HJ, et al., Size effect in Mn(2+)-doped BaTiO(3)nanopowders observed by electron paramagnetic resonance,Phys. Rev. B, 2000, 62, 2085.[Crossref]
  • [21] Erdem E, Kiraz K, Somer M, Eichel R-A. Size effects inFe(3+)-doped PbTiO(3) nanocrystals-Formation and orientationof defect-dipoles. J. Eur. Cer. Soc., 2010, 30, 289.[Crossref]
  • [22] Erdem E, Semmelhack HC, Bottcher R, Rumpf H, Banys J,Matthes A, et al. Study of the tetragonal-to-cubic phasetransition in PbTio(3) nanopowders, J. Phys. Condens. Matter,2006, 18, 3861.[Crossref]
  • [23] Byrappa K, Yoshimura M., Handbook of HydrothermalTechnology, New Jersey: Noyes Public 2001.
  • [24] Mehnert R., UV & EB Curing Technology & Equipment, London:Wiley 1998.
  • [25] Rumpf H, Modrow H, Hormes J, Glasel HJ, Hartmann E, Erdem E,et al., Preparation of nanocrystalline BaTiO3 characterized byin situ X-ray absorption spectroscopy, J Phys. Chem. B, 2001,3415.
  • [26] Lee JG, Park JY, Oh YJ, Kim CS, Magnetic properties of CoFe2O4thin films prepared by a sol-gel method, J. Appl. Phys. 1998,84, 2801.[Crossref]
  • [27] Erdem E, Bottcher R, Glasel HJ, Hartmann E, Size effects inchromium-doped PbTiO3 nanopowders observed by multifrequencyEPR, Magn. Reson. Chem., 2005, 43, S174.[Crossref]
  • [28] Jakes P, Erdem E, Ozarowski A, van Tol J, Buckan R, MikhailovaD, et al., Local coordination of Fe3+ in Li[Co0.98Fe0.02]O2 ascathode material for lithium ion batteries-multi-frequency EPRand Monte-Carlo Newman-superposition model analysis, Phys.Chem. Chem. Phys., 2011, 13, 9344.[WoS][PubMed]
  • [29] Kaftelen H, Ocakoglu K, Tu S, Thomann R, Weber S, ErdemE., EPR and photoluminescence spectroscopy studies on thedefect structure of ZnO nanocrystals, Phys. Rev. B, 2012, 86,014113.[Crossref]
  • [30] Parashar SKS, Murty BS, Repp S, Weber S, Erdem E.Investigation of intrinsic defects in core-shell structured ZnOnanocrystals, J. Appl. Phys. 2012, 111, 113712.[WoS][Crossref]
  • [31] Erdem E, Microwave power, temperature, atmospheric andlight dependence of intrinsic defects in ZnO nanoparticles: Astudy of electron paramagnetic resonance (EPR) spectroscopy,J. Alloys Comp., 2014, 605, 34.
  • [32] Jacob BP, Kumar A, Pant RP, Singh S, Mohammed EM, Influenceof preparation method on structural and magnetic properties ofnickel ferrite nanoparticles, Bull. Mater. Sci.. 2011, 34, 1345.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_hyma-2014-0003
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.