Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2015 | 1 | 1 |

Article title

In situ syntheses of semiconducting nanoparticles in conjugated polymer matrices and their application in photovoltaics.


Title variants

Languages of publication



Hybrid solar cells based on conjugated polymers and inorganic semiconducting nanoparticles combine beneficial properties of organic and inorganic semiconductors and are, therefore, an exciting alternative to pure organic or inorganic solar cell technologies. Several approaches for the fabrication of hybrid solar cells are already elaborated and explored. In the last years routes have emerged, where the nanoparticles are prepared directly in the matrix of the conjugated polymer. Here, the conjugated polymer prevents the nanoparticles from excessive growth and thereby makes additional capping agents obsolete. This review focuses on in situ preparation methods of inorganic semiconducting nanoparticles in conjugated polymers in view of applications in hybrid solar cells. The details, advantages and disadvantages of the different in situ methods are critically examined and put in comparison to the classical route where pre-synthesized nanoparticles are used. Various key factors influencing the solar cell performance as well as future strategies for increasing the overall efficiency of hybrid solar cells prepared via in situ routes are discussed.







Physical description


1 - 1 - 2014
19 - 8 - 2013


  • Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
  • Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
  • Christian Doppler Laboratory for Nanocomposite Solar Cells, Graz University of Technology, Austria


  • [1] Li G., Zhu R., Yang Y., Polymer solar cells, Nat. Photonics, 2012, 6, 153-161.[Crossref]
  • [2] Press release - Heliatek, http://www.heliatek.com/newscenter/latest_news/neuer-weltrekord-fur-organischesolarzellen-heliatek-behauptet-sich-mit-12-zelleffizienz-alstechnologiefuhrer/?lang=en, accessed on Jan 28, 2013.
  • [3] Green M.A., Emery K., Hishikawa Y., Warta W., Dunlop E.D., Solar cell efficiency tables (version 40), Prog. Photovolt: Res. Appl., 2012, 20, 606-614.[Crossref]
  • [4] Gevorgyan S.A., Medford A.J., Bundgaard E., Sapkota S.B., Schleiermacher H., Zimmermann B., Würfel U., Chafiq A., Lira-Cantu M., Swonke T., Wagner M., Brabec C.J., Haillant O., Voroshazi E., Aernouts T., Steim R., Hauch J.A., Elschner A., Pannone M., Xiao M., Langzettel A., Laird D., Lloyd M.T., Rath T., Maier E., Trimmel G., Hermenau M., Menke T., Leo K., Rösch R., Seeland M., Hoppe H., Nagle T.J., Burke K.B., Fell C.J., Vak D., Singh T.B., Watkins S.E., Galagan Y., Manor A., Katz E.A., Kim T., Kim K., Sommeling P.M., Verhees W.J.H., Veenstra S.C., Riede M., Christophoro M.G., Currier T., Shrotriya V., Schwartz G., Krebs F.C., An inter-laboratory stability study of roll-to-roll coated flexible polymer solar modules, Sol. Energy Mater. Sol. Cells, 2011, 95, 1398-1416.[Crossref]
  • [5] Ren S., Chang L.-Y., Lim S.-K., Zhao J., Smith M., Zhao N., Bulovic V., Bawendi M., Gradecak S., Inorganic-Organic Hybrid Solar Cell: Bridging Quantum Dots to Conjugated Polymer Nanowires, Nano Lett., 2011, 11, 3998-4002.[Crossref]
  • [6] Seo J., Cho M.J., Lee D., Cartwright A.N., Prasad P.N., Efficient Heterojunction Photovoltaic Cell Utilizing Nanocomposites of Lead Sulfide Nanocrystals and a Low- Bandgap Polymer, Adv. Mater., 2011, 23, 3984-3988.[Crossref]
  • [7] Zhou R., Zheng Y., Qian L., Yang Y., Holloway P.H., Xue J., Solution-processed, nanostructured hybrid solar cells with broad spectral sensitivity and stability, Nanoscale, 2012, 4, 3507-3514.
  • [8] Jeltsch K.F., Schädel M., Bonekamp J.-B., Niyamakom P., Rauscher F., Lademann H.W.A., Dumsch I., Allard S., Scherf U., Meerholz K., Efficiency Enhanced Hybrid Solar Cells Using a Blend of Quantum Dots and Nanorods, Adv. Funct.Mater., 2012, 22, 397-404.[Crossref]
  • [9] Greenham N.C., Peng X, Alivisatos A.P., Charge separation and transport in conjugated-polymer/semiconductornanocrystal composites studied by photoluminescence quenching and photoconductivity, Phys. Rev. B, 1996, 54, 17628-17637.[Crossref]
  • [10] Huynh W.U., Dittmer J.J., Alivisatos A.P., Hybrid Nanorod- Polymer Solar Cells, Science, 2002, 295, 2425-2427.
  • [11] Zhou Y., Eck M., Krüger M., Bulk-heterojunction hybrid solar cells based on colloidal nanocrystals and conjugated polymers, Energy Environ. Sci., 2010, 3, 1851-1864.[Crossref]
  • [12] Saunders B.R., Turner M.L., Nanoparticle-polymer photovoltaic cells, Adv. Colloid Interface Sci., 2008, 138, 1-23.
  • [13] Saunders B.R., Hybrid polymer/nanoparticle solar cells: Preparation, principles and challenges, J. Colloid Interf. Sci., 2012, 369, 1-15.
  • [14] Zhou R., Xue J., Hybrid Polymer-Nanocrystal Materials for Photovoltaic Applications, Chem. Phys. Chem., 2012, 13, 2471-2480.
  • [15] Reiss P., Couderc E., De Girolamo J., Pron A., Conjugated polymers/semiconductor nanocrystals hybrid materials - preparation, electrical transport properties and applications, Nanoscale, 2011, 3, 446-489.
  • [16] Skompska M., Hybrid conjugated polymer/semiconductor photovoltaic cells, Synth. Met., 2010, 160, 1-15.
  • [17] Wright M., Uddin A., Organic-inorganic hybrid solar cells: A comparative review, Sol. Energy Mater. Sol. Cells, 2012, 107, 87-111.[Crossref]
  • [18] Moulé A.J., Chang L., Thambidurai C., Vidu R., Stroeve P., Hybrid Solar Cells: basic principles and the role of ligands, J.Mater. Chem., 2012, 22, 2351-2368. [Crossref]
  • [19] Zhao L., Lin Z., Crafting Semiconductor Organic−Inorganic Nanocomposites via Placing Conjugated Polymers in Intimate Contact with Nanocrystals for Hybrid Solar Cells, Adv. Mater., 2012, 24, 4353-4368.[Crossref]
  • [20] Tang W., Qu S., Teng F., Hou Y., Wang Y., Wang Z., Recent Developments of Hybrid Nanocrystal/Polymer Bulk Heterojunction Solar Cells, J. Nanosci. Nanotechnol., 2011, 11, 9384-9394.
  • [21] Wei H., Zhang H., Sun H., Yang B., Preparation of polymernanocrystals hybrid solar cells through aqueous approaches, Nano Today, 2012, 7, 316-326.[Crossref]
  • [22] Martinez-Ferrero E., Albero J., Palomares E., Materials, Nanomorphology, and Interfacial Charge Transfer Reactions in Quantum Dot/Polymer Solar Cell Devices, J. Phys. Chem.Lett., 2010, 1, 3039-3045.[Crossref]
  • [23] Helgesen M., Sondergaard R., Krebs F.C., Advanced materials and processes for polymer solar cell devices, J.Mater. Chem., 2010, 20, 36-60.[Crossref]
  • [24] Weickert J., Dunbar R.B., Hesse H.C., Wiedemann W., Schmidt-Mende L., Nanostructured organic and hybrid solar cells, Adv. Mater. 2011, 23, 1810-1828.[Crossref]
  • [25] Xu T., Qiao Q., Conjugated polymer-inorganic semiconductor hybrid solar cells, Energy Environ. Sci., 2011, 4, 2700-2720.[Crossref]
  • [26] Bashouti M., Lifshitz E., PbS Sub-micrometer Structures with Anisotropic Shape: Ribbons, Wires, Octapods, and Hollowed Cubes, Inorg. Chem., 2008, 47, 678-682.[Crossref]
  • [27] Sashchiuk A., Amirav L., Bashouti M., Krueger M., Sivan U., Lifshitz E., PbSe Nanocrystal Assemblies: Synthesis and Structural, Optical, and Electrical Characterization, Nano Lett., 2004, 4, 159-165.[Crossref]
  • [28] Alivisatos A.P.,Semiconductor Clusters, Nanocrystals, and Quantum Dots, Science, 1996, 271, 933-937.
  • [29] van Hal P.A., Wienk M.M., Kroon J.M., Verhees W.J.H., Slooff L.H., van Gennip W.J.H., Jonkheijm P., Janssen R.A.J., Photoinduced Electron Transfer and Photovoltaic Response of a MDMO-PPV:TiO2 Bulk-Heterojunction, Adv. Mater., 2003, 15, 118-121.[Crossref]
  • [30] Oosterhout S.D., Wienk M.M., van Bavel S.S., Thiedmann R., Koster L.J.A., Gilot J., Loos J., Schmidt V., Janssen R.A.J., The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells, Nat. Mater., 2009, 8, 818-824.[Crossref]
  • [31] Reynolds L.X., Lutz T., Dowland S., MacLachlan A., King S., Haque S.A., Charge photogeneration in hybrid solar cells: a comparison between quantum dots and in situ grown CdS, Nanoscale, 2012, 4, 1561-1564, http://dx.doi.org/10.1039/ C2NR12081J.[Crossref]
  • [32] Zhou Y., Eck M., Men C., Rauscher F., Niyamakom P., Yilmaz S., Dumsch I., Allard S., Scherf U., Krüger M., Efficient polymer nanocrystal hybrid solar cells by improved nanocrystal composition, Sol. Energy Mater. Sol. Cells, 2011, 95, 3227-3232.[Crossref]
  • [33] Dayal S., Kopidakis N., Olson D.C., Ginley D.S., Rumbles G., Photovoltaic Devices with a Low Band Gap Polymer and CdSe Nanostructures Exceeding 3% Efficiency, Nano Lett., 2010, 10, 239-242. [Crossref]
  • [34] Chen H.-C., Lai C.-W., Wu I.-C., Pan H.-R., Chen I.-W. P., Peng Y.-K., Liu C.-L., Chen C.-H., Chou P.-T., Enhanced Performance and Air Stability of 3.2% Hybrid Solar Cells: How the Functional Polymer and CdTe Nanostructure Boost the Solar Cell Efficiency, Adv. Mater., 2011, 23, 5451-5455.[Crossref]
  • [35] Rath T., Edler M., Haas W., Fischereder A., Moscher S., Schenk A., Trattnig R., Sezen M., Mauthner G., Pein A., Meischler D., Bartl K., Saf R., Bansal N., Haque S.A., Hofer F., List E.J.W., Trimmel G., A Direct Route Towards Polymer/ Copper Indium Sulfide Nanocomposite Solar Cells, Adv.Energy Mater., 2011, 1, 1046-1050.[Crossref]
  • [36] Arici E., Hoppe H., Schäffler F., Meissner D., Malik M.A., Sariciftci N.S., Hybrid solar cells based on inorganic nanoclusters and conjugated polymers, Thin Solid Films, 2004, 451-452, 612-618.
  • [37] Cui D., Xu J., Zhu T., Paradee G., Ashok S., Gerhold M., Harvest of near infrared light in PbSe nanocrystal-polymer hybrid photovoltaic cells, Appl. Phys. Lett., 2006, 88, 183111.[Crossref]
  • [38] Tan F., Qu S., Wu J., Liu K., Zhou S., Wang Z., Preparation of SnS2 colloidal quantum dots and their application in organic/ inorganic hybrid solar cells, Nanoscale Res. Lett., 2011, 6, 298.[Crossref]
  • [39] Lin Y.-Y., Wang D.-W., Yen H.-C., Chen H.-L., Chen C.- C., Chen C.-M., Tang C.-Y., Chen C.-W., Extended red light harvesting in a poly(3-hexylthiophene)/iron disulfide nanocrystal hybrid solar cell, Nanotechnology, 2009, 20, 405207.[Crossref]
  • [40] Martinez L., Bernechea M., Garcia de Arquer F.P., Konstantatos G., Near IR-Sensitive, Non-toxic, Polymer/ Nanocrystal Solar Cells Employing Bi2S3 as the Electron Acceptor, Adv. Energy Mater., 2011, 1, 1029-1035.[Crossref]
  • [41] Liu C.Y., Holman Z.C., Kortshagen U.R., Optimization of Si NC/P3HT Hybrid Solar Cells, Adv. Funct. Mater., 2010, 20, 2157-2164.[Crossref]
  • [42] Huynh W.U., Dittmer J.J., Libby W.C., Whiting G.L., Alivisatos A.P., Controlling the Morphology of Nanocrystal-Polymer Composites for Solar Cells, Adv. Funct. Mater., 2003, 13, 73-79.[Crossref]
  • [43] Radychev N., Lokteva I., Witt F., Kolny-Olesiak J., Borchert H., Parisi J., Physical Origin of the Impact of Different Nanocrystal Surface Modifications on the Performance of CdSe/P3HT Hybrid Solar Cells, J. Phys. Chem. C, 2011, 115, 14111-14122.[Crossref]
  • [44] Greaney M.J., Das S., Webber D.H., Bradforth S.E., Brutchey R.L., Improving Open Circuit Potential in Hybrid P3HT:CdSe Bulk Heterojunction Solar Cells via Colloidal tert-Butylthiol Ligand Exchange, ACS Nano, 2012, 6, 4222-4230.[Crossref]
  • [45] Webber D.H., Brutchey R.L., Ligand Exchange on Colloidal CdSe Nanocrystals Using Thermally Labile tert-Butylthiol for Improved Photocurrent in Nanocrystal Films, J. Am. Chem.Soc., 2012, 134, 1085-1092.
  • [46] Seo J., Kim W.J., Kim S.J., Lee, K.-S., Cartwright A.N., Prasad P.N., Polymer nanocomposite photovoltaics utilizing CdSe nanocrystals capped with a thermally cleavable solubilizing ligand, Appl. Phys. Lett., 2009, 94, 133302. [Crossref]
  • [47] Antoun T., Brayner R., Al Terary S., Fiévet F., Chehimi M., Yassar A., Facile Synthesis of Oligothiophene-Capped CdS Nanoparticles, Eur. J. Inorg. Chem., 2007, 1275-1284.[Crossref]
  • [48] Locklin J., Patton D., Deng S., Baba A., Millan M., Advincula R.C., Conjugated Oligothiophene-Dendron-Capped CdSe Nanoparticles: Synthesis and Energy Transfer, Chem. Mater., 2004, 16, 5187-5193.[Crossref]
  • [49] Watt A.A.R., Meredith P., Riches J.D., Atkinson S., Rubinsztein-Dunlop H., A PbS quantum-cube: conducting polymer composite for photovoltaic applications, Curr. Appl.Phys., 2004, 4, 320-322.[Crossref]
  • [50] Zhou Y., Riehle F.S., Yuan Y., Schleiermacher H.-F., Niggemann M., Urban G.A., Krüger M., Improved efficiency of hybrid solar cells based on non-ligand-exchanged CdSe quantum dots and poly(3-hexylthiophene), Appl. Phys. Lett., 2010, 96, 013304-1-3.[Crossref]
  • [51] Williams S.S., Hampton M.J., Gowrishankar V., Ding I.-K., Templeton J.L., Samulski E.T., DeSimone J.M., McGehee M.D., Nanostructured Titania−Polymer Photovoltaic Devices Made Using PFPE-Based Nanomolding Techniques, Chem.Mater., 2008, 20, 5229-5234.[Crossref]
  • [52] Coakley K.M., McGehee D., Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania, Appl. Phys. Lett., 2003, 83, 3380-1-3.[Crossref]
  • [53] Gershon T., Metal oxide applications in organic-based photovoltaics, Mater. Sci Techn., 2011, 27, 1357-1371.[Crossref]
  • [54] Boucle J., Ravirajan P., Nelson J., Hybrid polymer-metal oxide thin films for photovoltaic applications, J. Mater. Chem., 2007, 17, 3141-3153.[Crossref]
  • [55] Boucle J., Ackermann J., Solid State dye sensitized and bulk heterojunction solar cells using TiO2 and ZnO nanostructures: recent progress and new concepts at the borderline, Polym.Int., 2012, 61, 355-373.[Crossref]
  • [56] Slooff L.H., Wienk M.M., Kroon J.M., Hybrid TiO2:polymer photovoltaic cells made from a titanium oxide precursor, Thin Solid Films, 2004, 451-452, 634-638.
  • [57] Slooff L.H., Kroon J.M., Loos J., Koetse M.M., Sweelssen J., Influence of the Relative Humidity on the Performance of Polymer/TiO2 Photovoltaic Cells, Adv. Funct. Mater., 2005, 15, 689-694.[Crossref]
  • [58] Haeldermans I., Vandewal K., Oosterbaan W.D., Gadisa A., D´Haen J., Van Bael M.K., Manca J.V., Mullens J., Groundstate charge-transfer complex formation in hybrid poly(3- hexyl thiophene):titanium dioxide solar cells, Appl. Phys.Lett., 2008, 93, 223302-1-3.[Crossref]
  • [59] Barlier V., Bounor-Legare V., Alcouffe P., Boiteux G., Davenas J., Formation of TiO2 domains in Poly(9-vinylcarbazole) thin film by hydrolysis-condensation of a metal alkoxide, Thin Solid Films, 2007, 515, 6328-6331.
  • [60] Barlier V., Bounor-Legare V., Boiteux G., Leonard D., Davenas J., TiO2:polymer bulk-heterojunction thin films made from a miscible new carbazole based TiO2 precursor with poly(Nvinylcarbazole) for enhanced charge transfer properties, Mater. Chem. Phys., 2009, 115, 429-433. [Crossref]
  • [61] Barlier V., Bounor-Legare V., Boiteux G., Davenas J., Slazak A., Rybak A., Jung J., Photogeneration and photovoltaic effect in poly(N-vinylcarbazole): TiO2 bulkheterojunction elaborated by hydrolysis-condensation reactions of TiO2 precursors, Synth. Metals, 2009, 159, 508-512.
  • [62] Chang Y.-M., Su W.-F., Wang L., Photoactive Polythhiophene:Titania Hybrids with Excellent Miscibility for Use in Polymer Photovoltaic Cells, Macromol. Rapid Commun., 2008, 29, 1303-1308.[Crossref]
  • [63] Chen H.-J., Wang L., Chiu W.-Y., Effects of annealing treatment on the properties of MEH-PPV/titania hybrids via in situ sol-gel reaction, Europ. Polym. J., 2007, 43, 4750-4761.[Crossref]
  • [64] Chen H.-J., Wang L., Chiu W.-Y., Preparation of MEH-PPV/ Nanosized Titania Hybrids Via In Situ Sol-Gel Reaction of Titanium Alkoxide: Optical Property, J. Polym Sci. A: Polym.Chem., 2008, 46, 515-529.[Crossref]
  • [65] Lin C.-L., Yeh M.-Y., Chen C. H., Sudhakar S., Luo S.-J., Hsu Y.-C., Huang C.-Y., Ho K.-C., Luh T.-Y., Silica−Titania- Based Organic−Inorganic Hybrid Materials for Photovoltaic Applications, Chem. Mater., 2006, 18, 4157-4162.[Crossref]
  • [66] Wang M., Wang X., PPV/TiO2 hybrid composites prepared from PPV precursor reaction in aqueous media and their application in solar cells, Polymer, 2008, 49, 1587-1593.[Crossref]
  • [67] Neyshtadt S., Kalina M., Frey G.L., Self-Organized Semiconducting Polymer-Incorporated Mesostructured Titania for Photovoltaic Applications, Adv. Mater., 2008, 20, 2541-2546.[Crossref]
  • [68] Neyshtadt S., Jahnke J.P., Messinger R.J., Rawal A., Segal Peretz T., Huppert D., Chmelka B.F., Frey G.L., Understanding and Controlling Organic-Inorganic Interfaces in Mesostructured Hybrid Photovoltaic Materials, J. Am.Chem. Soc., 2011, 133, 10119-10133.[Crossref]
  • [69] Huang J., Yin Z., Zheng Q., Applications of ZnO in organic and hybrid solar cells, Energy Environ. Sci., 2011, 4, 3861-3877.[Crossref]
  • [70] Beek W.J.E., Sloof L.H., Wienk M.M., Kroon J.M., Janssen, R.A.J., Hybrid Solar Cells Using a Zinc Oxide Precursor and a Conjugated Polymer, Adv. Funct. Mater., 2005, 15, 1703-1707.[Crossref]
  • [71] Beek W.J.E., Wienk M.M., Janssen R.A.J., Efficient Hybrid Solar Cells from Zinc Oxide Nanoparticles and a Conjugated Polymer, Adv. Mater., 2004, 16, 1009-1013.[Crossref]
  • [72] Moet D.J.D., Koster L.J.A., de Boer B., Blom P.W.M., Hybrid Polymer Solar Cells from Highly Reactive Diethylzinc: MDMO-PPV versus P3HT, Chem. Mater., 2007, 19, 5856-5861.[Crossref]
  • [73] Stenzel O., Koster L.J.A., Thiedmann R., Oosterhout S.D., Janssen R.A.J., Schmidt V., A New Approach to Model- Based Simulation of Disordered Polymer Blend Solar Cells, Adv. Funct. Mater., 2012, 22, 1236-1244.[Crossref]
  • [74] Oosterhout S.D., Koster L.J.A., van Bavel S.S., Loos J., Stenzel O., Thiedmann R., Schmidt V., Campo B., Cleij T.J., Lutzen L., Vanderzande D., Wienk M.M., Janssen R.A.J., Controlling the Morphology and Efficiency of Hybrid ZnO:Polythiophene Solar Cells Via Side Chain Functionalization, Adv. Energy Mater., 2011, 1, 90-96.[Crossref]
  • [75] Oosterhout S.D., Wienk, M.M., Al-Hashimi M., Heeney M., Janssen R.A.J., Hybrid Polymer Solar Cells from Zinc Oxide and Poly-(3-hexylselenophene), J. Phys. Chem C., 2011, 115, 18901-18908.
  • [76] Han S.J., Adikaari A.A.D.T., Jayawardena K.D.G.I., Nismy N.A., Silva S.R.P., Control of nanocrystal surface defects for efficient charge extraction in polymer-ZnO photovoltaic systems, J. Appl. Phys., 2012, 112, 066103-1-3.[Crossref]
  • [77] Peng X., Zhang L., Chen Y., Li F., Zhou W., In situ preparation and fluorescence quenching properties of polythiophene/ ZnO nanocrystals hybrids through atom-transfer radical polymerization and hydrolysis, Appl. Surf. Sci., 2010, 256, 2948-2955.
  • [78] Yuan K., Li F., Chen L., Chen Y., Approach to a block polymer precursor from poly(3-hexylthiophene)nitroxide-mediated in situ polymerization for stabilization of poly(3-hexylthiophene)/ ZnO hybrid solar cells, Thin Solid Films, 2012, 520, 6299-6306.
  • [79] Yuan K., Li F., Chen Y., Wang X., Chen L., In-situ growth nanocomposites composed of rodlike ZnO nanocrystals arranged by nanoparticles in a self-assembling diblock copolymer for heterojunction optoelectronics, J. Mater.Chem., 2011, 21, 11886-11894.
  • [80] Lai C.-H., Lee W.-F., Wu I.-C., Kang C.-C., Chen D.-Y., Chen L.-J., Chou P.-T., Highly luminescent, homogeneous ZnO nanoparticles synthesized via semiconductive polyalkyloxythiophene template, J. Mater. Chem., 2009, 19, 7284-7289.[Crossref]
  • [81] Wang M., Lian Y., Wang X., PPV/PVA/ZnO nanocomposite prepared by complex precursor method and its photovoltaic application, Curr. Appl. Phys., 2009, 9, 189-194.[Crossref]
  • [82] Liu G., Yin L.-C., Wang J., Niu P., Zhen C., Xie Y., Cheng H.-M., A red anatase TiO2 photocatalyst for solar energy conversion, Energy Environ. Sci., 2012, 5, 9603-9610.[Crossref]
  • [83] Chen W., Chen Y., Li F., Chen L., Yuan K., Yao K., Wang P., Ordered microstructure induced by orientation behavior of liquid-crystal polythiophene for performance improvement of hybrid solar cells, Sol. Energy Mater. Sol. Cells, 2012, 96, 266-275.[Crossref]
  • [84] Schockley W., Queisser H.J., Detailed Balance Limit of Efficiency of p-n Junction Solar Cells, J. Appl. Phys., 1961, 32, 510-519.[Crossref]
  • [85] Dhage S.R., Colorado H.A., Hahn T., Morphological variations in cadmium sulfide nanocrystals without phase transformation, Nanoscale Res. Lett., 2011, 6, 420-1-5.[Crossref]
  • [86] Jasieniak J., Califano M., Watkins S.E., Size-Dependent Valence and Conduction Band-Edge Energies of Semiconductor Nanocrystals, ACS Nano, 2011, 5, 5888-5902.[Crossref]
  • [87] Arici E., Sariciftci N.S., Meissner D., Hybrid Solar Cells Based on Nanoparticles of CuInS2 in Organic Matrices, Adv. Funct.Mater., 2003, 13, 165-171.[Crossref]
  • [88] Watt A., Thomsen E., Meredith P., Rubinsztein-Dunlop H., A new approach to the synthesis of conjugated polymer nanocrystal composites for heterojunction optoelectronics, Chem. Commun., 2004, 2334-2335.[Crossref]
  • [89] Watt A., Rubinsztein-Dunlop H., Meredith P., Growing semiconductor nanocrystals directly in a conducting polymer, Mater. Lett., 2005, 59, 3033-3036.[Crossref]
  • [90] Warner J.H., Watt A.A.R., Monodisperse PbS nanocrystals synthesized in a conducting polymer, Mater. Lett., 2006, 60, 2375-2378.[Crossref]
  • [91] Watt A.A.R., Blake D., Warner J.H., Thomsen E.A., Tavenner E.L., Rubinsztein-Dunlop H., Meredith P., Lead sulfide nanocrystal: conducting polymer solar cells, J. Phys. D: Appl.Phys., 2005, 38, 2006-2012.[Crossref]
  • [92] Watt A., Eichmann T., Rubinsztein-Dunlop H., Meredith P., Carrier transport in PbS nanocrystal conducting polymer composites, Appl. Phys. Lett., 2005, 87, 253109-1-3.[Crossref]
  • [93] Stavrinadis A., Beal R., Smith J.M., Assender H.E., Watt A.A.R., Direct Formation of PbS Nanorods in a Conjugated Polymer, Adv. Mater., 2008, 20, 3105-3109.[Crossref]
  • [94] Stavrinadis A., Xu S., Warner J.H., Hutchison J.L., Smith J.M., Watt A.A.R., Superstructures of PbS nanocrystals in a conjugated polymer and the aligning role of oxidation, Nanotechnology, 2009, 20, 445608-1-7.[Crossref]
  • [95] Liao H.-C., Chen S.-Y., Liu D.-M., In-Situ Growing CdS Single- Crystal Nanorods via P3HT Polymer as a Soft Template for Enhancing Photovoltaic Performance, Macromolecules, 2009, 42, 6558-6563.[Crossref]
  • [96] Liao H.-C., Chantarat N., Chen S.-Y., Peng C.-H., Annealing Effect on Photovoltaic Performance of Hybrid P3HT/In-Situ Grown CdS Nanocrystal Solar Cells, J. Electrochem. Soc., 2011, 158, E67-E72.
  • [97] Sonar P., Sreenivasan K.P., Maddanimath T., Vijayamohanan K., Comparative behavior of CdS and CdSe quantum dots in poly(3-hexylthiophene) based nanocomposites, Mater. Res.Bull., 2006, 41, 198-208.[Crossref]
  • [98] Dayal S., Kopidakis N, Olson D.C., Ginley D.S., Rumbles G., Direct Synthesis of CdSe Nanoparticles in Poly(3- hexylthiophene), J. Am. Chem. Soc., 2009, 131, 17726-17727.
  • [99] Sun, B., Greenham, N.C., Improved Efficiency of Photovoltaics Based on CdSe Nanorods and Poly(3-hexylthiophene) Nanofibers, Phys. Chem. Chem. Phys., 2006, 8, 3557-3560.[Crossref]
  • [100] Wu Y., Zhang G., Performance Enhancement of Hybrid Solar Cells Through Chemical Vapor Annealing, Nano Lett., 2010, 10, 1628-1631.[Crossref]
  • [101] Antolini F., Pentimalli M., Di Luccio T., Terzi R., Schioppa M., Re M., Mirenghi L., Tapfer L., Structural characterization of CdS nanoparticles grown in polystyrene matrix by thermolytic synthesis, Mater. Lett., 2005, 59, 3181-3187.[Crossref]
  • [102] Antolini F., Burresi E., Stroea L., Morandi V., Ortolani L., Accorsi G., Blosi M., Time and Temperature Dependence of CdS Nanoparticles Grown in a Polystyrene Matrix, J. Nanomater., 2012, 815696, 1-11.
  • [103] Resta V., Laera A.M., Piscopiello E., Schioppa M., Tapfer L., Highly Efficient Precursors for Direct Synthesis of Tailored CdS Nanocrystals in Organic Polymers, J. Phys. Chem. C, 2010, 114, 17311-17317. [Crossref]
  • [104] Boriello C., Masala S., Bizzarro V., Nenna G., Re M., Pesce E., Minarini C., Di Luccio T., Electroluminescence properties of poly(3-hexylthiophene)-cadmium sulfide nanoparticles grown in situ, J. Appl. Polym. Sci., 2011, 122, 3624-3629.[Crossref]
  • [105] Masala S., Del Gobbo S., Borriello C., Bizzarro V., La Ferrara V., Re M., Pesce E., Minarini C., De Crescenzi M., Di Luccio T., Hybrid polymer-CdS solar cell active layers formed by in situ growth of CdS nanoparticles, J. Nanopart. Res., 2011, 13, 6537-6544.[Crossref]
  • [106] Laera A.M., Resta V., Ferrara M.C., Schioppa M., Piscopiello E., Tapfer L., Synthesis of hybrid organic-inorganic nanocomposite materials based on CdS nanocrystals for energy conversion applications, J. Nanopart. Res., 2011, 13, 5705-5717.[Crossref]
  • [107] Bhardwaj R.K., Kushwaha H.S., Gaur J., Upreti T., Bharti V., Gupta V., Chaudhary N., Sharma G.D., Banerjee K., Chand S., A green approach for direct growth of CdS nanoparticles network in poly(3-hexylthiophene-2,5-diyl) polymer film for hybrid photovoltaic, Mater. Lett., 2012, 89, 195-197.
  • [108] De Freitas J.N., Grova I.R., Akcelrud L.C., Arici E., Sariciftci N.S., Nogueira A.F., The effects of CdSe incorporation into bulk heterojunction solar cells, J. Mater. Chem., 2010, 20, 4845-4853.[Crossref]
  • [109] Khan M.T., Kaur A., Dhawan S.K., Chaud S., In-Situ growth of cadmium telluride nanocrystals in poly(3-hexylthiophene) matrix for photovoltaic application, J. Appl. Phys., 2011, 110, 044509-1-7.[Crossref]
  • [110] Kwak E.-J., Woo S., Lee H., Kim H., Kim, Y., Hybrid Solar Cells with In-Situ Prepared Inorganic Nanoparticles/Polymer Bulk Heterojunction Films, J. Nanoelectron. Optoe., 2012, 7, 434-438.[Crossref]
  • [111] Maier E., Haas W., Santis-Alvarez A.J., Rath T., Hofer F., Stelzer F., Trimmel G., Polymer - CuInS2 hybrid solar cells obtained by an in-situ formation route, Conference Record of the 35th IEEE Photovoltaic Specialists Conference, 2010, 3365-3368.
  • [112] Katz E.A., Gevorgyan S., Orynbayev M.S., Krebs F.C., Outdoor testing and long-term stability of plastic solar cells, Eur.Phys. J. Appl. Phys., 2007, 36, 307-311.
  • [113] Maier E., Fischereder A., Haas W., Mauthner G., Albering J., Rath T., Hofer F., List E.J.W., Trimmel G., Metal sulfidepolymer nanocomposite thin films prepared by a direct formation route for photovoltaic applications, Thin Solid Films, 2011, 519, 4201-4206.
  • [114] Maier E., Rath T., Haas W., Werzer O., Saf R., Hofer F., Meissner D., Volobujeva O., Bereznev S., Mellikov E., Amenitsch H., Resel R., Trimmel G., CuInS2-Poly(3- (ethyl-4-butanoate)thiophene) nanocomposite solar cells: Preparation by an in situ formation route, performance and stability issues, Sol. Energy Mater. Sol. Cells, 2011, 95, 1354-1361.[Crossref]
  • [115] Gruber M., Stickler B.A., Trimmel G., Schürrer F., Zojer K., Impact of energy alignment and morphology on the efficiency in inorganic-organic hybrid solar cells, Org. Electronics, 2010, 11, 1999-2011. [Crossref]
  • [116] Stickler B.A., Gruber M., Trimmel G., Schürrer F., Zojer K., Influence of transport-related material parameters on the I-V characteristic of inorganic-organic hybrid solar cells, Org.Electronics, 2011, 12, 1434-1445.[Crossref]
  • [117] Leventis H.C., King S.P., Sudlow A., Hill M.S., Molloy K.C., Haque S.A., Nanostructured Hybrid Polymer−Inorganic Solar Cell Active Layers Formed by Controllable in Situ Growth of Semiconducting Sulfide Networks, Nano Lett., 2010, 10, 1253 - 1258.[Crossref]
  • [118] Dowland S., Lutz T., Ward A., King S.P., Sudlow A., Hill M.S., Molloy K.C., Haque S.A., Direct growth of metal sulfide nanoparticle networks in solid-state polymer films for hybrid inorganic-organic solar cells, Adv. Mater., 2011, 23, 2739-2744.[Crossref]
  • [119] Krebs F.C., Tromholt T., Jorgensen M., Upscaling of polymer solar cell fabrication using full roll-to-roll processing, Nanoscale, 2010, 2, 873-886.
  • [120] DePuy C.H., King R.W., Pyrolytic Cis Eliminations, Chem.Rev., 1960, 60, 431-457.[Crossref]
  • [121] Arar M., Pein A., Haas W., Hofer F., Norrman K., Krebs F.C., Rath T., Trimmel G., Comprehensive Investigation of Silver Nanoparticle/Aluminum Electrodes for Copper Indium Sulfide/Polymer Hybrid Solar Cells, J. Phys. Chem. C, 2012, 116, 19191 - 19196.[Crossref]
  • [122] Rath T., Kaltenhauser V., Haas W., Reichmann A., Hofer F., Trimmel G., Solution-processed small molecule/copper indium sulfide hybrid solar cells, Sol. Energy Mater. Sol. Cells, 2013, 114, 38-42.[Crossref]
  • [123] Yang J., Tang A., Zhou R., Xue J., Effects of nanocrystal size and device aging on performance of hybrid poly(3- hexylthiophene):CdSe nanocrystal solar cells, Sol. Energy Mater. Sol. Cells, 2011, 95, 476-482.[Crossref]
  • [124] Fu W., Shi Y., Qiu W., Wang L., Nan Y., Shi M., Li H., Chen H., High efficiency hybrid solar cells using post-deposition ligand exchange by monothiols, Phys. Chem. Chem. Phys., 2012, 14, 12094-12098.[Crossref]
  • [125] Jia J., He W., Chen X., Lei Y., Zheng Z., In situ fabrication of chalcogenide nanoflake arrays for hybrid solar cells: the case of In2S3/poly(3-hexylthiophene), J. Mater. Chem., 2011, 21, 12824-12828.[Crossref]
  • [126] Lei Y., Jia H., He W., Zhang Y, Mi L., Hou H., Zhu G., Zheng Z., Hybrid Solar Cells with Outstanding Short-Circuit Currents Based on a Room Temperature Soft-Chemical Strategy: The Case of P3HT:Ag2S, J. Am. Chem. Soc., 2012, 134, 17392-17395.[Crossref]
  • [127] Li Y., Zhang Y., Lei Y., Li P., Jia H., Hou H., Zheng Z., In situ fabrication of Bi2S3 nanocrystal film for photovoltaic devices, Mater. Sci. Eng. B, 2012, 177, 1764-1768.
  • [128] Zhang Y., Wang C., Rothberg L., Ng M.-K.,Surface-initiated growth of conjugated polymers for functionalization of electronically active nanoporous networks: synthesis, structure and optical properties, J. Mater. Chem., 2006, 16, 3721-3725.[Crossref]
  • [129] Lu S., Sun S.-S., Jiang X., Mao J., Li T., Wan K., In situ 3-hexylthiophene polymerization onto surface of TiO2 based hybrid solar cells, J. Mater. Sci. Mater. Electron., 2010, 21, 682-686.
  • [130] Tepavcevic S., Darling S.B., Dimitrijevic N.M., Rajh T., Sibener S.J., Improved Hybrid Solar Cells via in situ UV Polymerization, Small, 2009, 5, 1776-1783.[Crossref]
  • [131] Atienzar P., Ishwara T., Horie M., Durrant J.R., Nelson J., Hybrid polymer-metal oxide solar cells by in situ chemical polymerization, J. Mater. Chem., 2009, 19, 5377-5380.[Crossref]
  • [132] Mejía M.L., Agapiou K., Yang X., Holliday B.J., Seeded Growth of CdS Nanoparticles within a Conducting Metallopolymer Matrix, J. Am. Chem. Soc., 2009, 131, 18196-18197.[Crossref]
  • [133] Roux S., Soler-Illia G.J.A.A., Demoustier-Champagne S., Audebert P., Sanchez C., Titania/Polypyrrole Hybrid Nanocomposites Built from In-Situ Generated Organically Functionalized Nanoanatase Building Blocks, Adv. Mater., 2003, 15, 217-221.[Crossref]
  • [134] Xiong S., Phua S.L., Dunn B.S., Ma J., Lu X., Covalently bonded Polyaniline-TiO2 Hybrids: A Facile Approach to Highly Stable Anodic Electrochromic Materials with Low Oxidation Potential, Chem. Mater., 2010, 22, 255-260.
  • [135] Skaff H., Sill K., Emrick T., Quantum Dots Tailored with Poly(para-phenylenevinylene), J. Am. Chem. Soc., 2004, 126, 11322-11325.[Crossref]
  • [136] Kanelidis I., Vaneski A., Lenkeit D., Pelz S., Elsner V., Stewart R.M., Rodríguez-Fernández J., Lutich A.A,. Susha A. S, Theissmann R., Adamczyk S., Rogach A.L., Holder E., Inorganic-organic nanocomposites of CdSe nanocrystals surface-modified with oligo- and poly(fluorene) moieties, J. Mater. Chem., 2011, 21, 2656-2662. [Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.