Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2015 | 1 | 1 |

Article title

A Non-Oxidative Approach Towards Hybrid Silicon Nanowire- Based Solar Cell Heterojunctions


Title variants

Languages of publication



A general method for the non-oxidative termination of silicon nanowires (Si NWs) is reviewed. Oxide-free Si NW have been successfully alkylated in the lab using a two-step chlorination/alkylation process. The distinctive properties of the resulting Si NW have been taken advantage of by integrating the Si NWs into functional devices such as solar cells. Moreover, molecularly terminated Si NWs exhibit lower defect density emissions than unmodified Si NWs. This, in part, explains the better performance of the molecularly terminated Si NW-based solar cells. Solar cells that use organic-inorganic hybrid Si NWs as absorbers show an increased open-circuit voltage (Voc), an increased short-circuit current (Jsc) and a higher fill factor (FF). The aim of chemical functionalization is to protect Si NWs from extensive oxidation, add functionality and to adjust surface electronic properties such as the work function, surface Fermi level and band bending. The stability of the terminated of Si NWs was found to be dependent on the molecular chain length, molecular coverage, interaction type (π-π or σ-σ), surface energy and Si NW diameter.







Physical description


1 - 1 - 2014
10 - 6 - 2013


  • Max-Planck-Institute for the Scienceof Light, Günther-Scharowsky-Str. 1, D-91058 Erlangen
  • Technical Physics, University of Erlangen – Nürnberg, 91058, Erlangen, Germany
  • The Department of Chemical Engineering and Russell Berrie Nanotechnology Institute,Technion – Israel Institute of Technology, Haifa 32000, Israel
  • Max-Planck-Institute for the Scienceof Light, Günther-Scharowsky-Str. 1, D-91058 Erlangen
  • Institute of Nanoarchitectures for Solar Energy Conversion, Helmholtz-Center Berlin (HZB) Hahn-Meitner-Platz 1, D-14109 Berlin


  • [1] E. Lifshitz, M. Bashouti, V. Kloper, A. Kigel, M.S. Eisen, S.Berger, Synthesis and characterization of PbSe quantum wires, multipods, quantum rods,and cubes, Nano Lett, 3 (2003) 857-862.[Crossref]
  • [2] K.S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J.E. Boercker, C.B. Carter, U.R. Kortshagen, D.J. Norris, E.S. Aydil, Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices, Nano Lett, 7 (2007) 1793-1798.[Crossref]
  • [3] M.Y. Bashouti, R.T. Tung, H. Haick, Tuning the Electrical Properties of Si Nanowire Field-Effect Transistors by Molecular Engineering, Small, 5 (2009) 2761-2769.[Crossref]
  • [4] S.W. Schmitt, F. Schechtel, D. Amkreutz, M. Bashouti, S.K.Srivastava, B. Hoffmann, C. Dieker, E. Spiecker, B. Rech, S.H. Christiansen, Nanowire Arrays in Multicrystalline Silicon Thin Films on Glass: A Promising Material for Research and Applications in Nanotechnology, Nano Lett, 12 (2012) 4050-4054.[Crossref]
  • [5] V. Sivakov, G. Andra, A. Gawlik, A. Berger, J. Plentz, F. Falk, S.H. Christiansen, Silicon Nanowire-Based Solar Cells on Glass: Synthesis, Optical Properties, and Cell Parameters, Nano Lett, 9 (2009) 1549-1554.[Crossref]
  • [6] M.D. Kelzenberg, D.B. Turner-Evans, B.M. Kayes, M.A.Filler, M.C. Putnam, N.S. Lewis, H.A. Atwater, Photovoltaic measurements in single-nanowire silicon solar cells, Nano Lett, 8 (2008) 710-714.[Crossref]
  • [7] M.D. Kelzenberg, D.B. Turner-Evans, M.C. Putnam, S.W.Boettcher, R.M. Briggs, J.Y. Baek, N.S. Lewis, H.A. Atwater, High-performance Si microwire photovoltaics, Energ Environ Sci, 4 (2011) 866-871.[Crossref]
  • [8] S.K. Kim, R.W. Day, J.F. Cahoon, T.J. Kempa, K.D.Song, H.G. Park, C.M. Lieber, Tuning Light Absorption in Core/Shell Silicon Nanowire Photovoltaic Devices through Morphological Design, Nano Lett, 12 (2012) 4971-4976.[Crossref]
  • [9] S. Kirchmeyer, K. Reuter, Scientific importance, properties and growing applications of poly( 3,4-ethylenedioxythiophene), J Mater Chem, 15 (2005) 2077-2088.[Crossref]
  • [10] C.Y. Kuo, C. Gau, B.T. Dai, Photovoltaic characteristics of silicon nanowire arrays synthesized by vapor-liquid-solid process, Sol Energ Mat Sol C, 95 (2011) 154-157.
  • [11] H.C. Lee, S.C. Wu, T.C. Yang, T.J. Yen, Efficiently Harvesting Sun Light for Silicon Solar Cells through Advanced Optical Couplers and A Radial p-n Junction Structure, Energies, 3 (2010) 784-U215.[Crossref]
  • [12] Q.L. Li, X.X. Zhu, Y. Yang, D.E. Ioannou, H.D. Xiong, D.W.Kwon, J.S. Suehle, C.A. Richter, The large-scale integration of high-performance silicon nanowire field effect transistors, Nanotechnology, 20 (2009).
  • [13] C.X. Lin, M.L. Povinelli, Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications, Opt Express, 17 (2009) 19371-19381.[Crossref]
  • [14] C.W. Liu, C.L. Cheng, B.T. Dai, C.H. Yang, J.Y. Wang, Fabrication and Photovoltaic Characteristics of Coaxial Silicon Nanowire Solar Cells Prepared by Wet Chemical Etching, Int J Photoenergy, (2012).[Crossref]
  • [15] C. Chen, R. Jia, H.H. Yue, H.F. Li, X.Y. Liu, D.Q. Wu, W.C.Ding, T.C. Ye, S. Kasai, H. Tamotsu, J.H. Chu, S.L. Wang, Silicon nanowire-array-textured solar cells for photovoltaic application, J Appl Phys, 108 (2010).
  • [16] Y. Paska, H. Haick, Interactive Effect of Hysteresis and Surface Chemistry on Gated Silicon Nanowire Gas Sensors, Acs Appl Mater Inter, 4 (2012) 2604-2617.[Crossref]
  • [17] Y. Paska, T. Stelzner, O. Assad, U. Tisch, S. Christiansen, H. Haick, Molecular Gating of Silicon Nanowire Field-Effect Transistors with Nonpolar Analytes, Acs Nano, 6 (2012) 335-345.[Crossref]
  • [18] Y. Paska, T. Stelzner, S. Christiansen, H. Haick, Enhanced Sensing of Nonpolar Volatile Organic Compounds by Silicon Nanowire Field Effect Transistors, Acs Nano, 5 (2011) 5620-5626.[Crossref]
  • [19] Y. Cui, Z.H. Zhong, D.L. Wang, W.U. Wang, C.M. Lieber, High performance silicon nanowire field effect transistors, Nano Lett, 3 (2003) 149-152.[Crossref]
  • [20] K.Q. Peng, J.S. Jie, W.J. Zhang, S.T. Lee, Silicon nanowires for rechargeable lithium-ion battery anodes, Appl Phys Lett, 93 (2008).
  • [21] R. Rurali, Colloquium: Structural, electronic, and transport properties of silicon nanowires, Rev Mod Phys, 82 (2010) 427-449.[Crossref]
  • [22] H. Haick, P.T. Hurley, A.I. Hochbaum, P.D. Yang, N.S. Lewis, Electrical characteristics and chemical stability of nonoxidized, methyl-terminated silicon nanowires, J Am Chem Soc, 128 (2006) 8990-8991.[Crossref]
  • [23] O. Shirak, O. Shtempluck, V. Kotchtakov, G. Bahir, Y.E. Yaish, High performance horizontal gate-all-around silicon nanowire field-effect transistors, Nanotechnology, 23 (2012).[PubMed][Crossref]
  • [24] Q.K. Shu, J.Q. Wei, K.L. Wang, S.A. Song, N. Guo, Y. Jia, Z. Li, Y. Xu, A.Y. Cao, H.W. Zhu, D.H. Wu, Efficient energy conversion of nanotube/nanowire-based solar cells, Chem Commun, 46 (2010) 5533-5535.[Crossref]
  • [25] B. Eisenhawer, S. Sensfuss, V. Sivakov, M. Pietsch, G. Andra, F. Falk, Increasing the efficiency of polymer solar cells by silicon nanowires, Nanotechnology, 22 (2011).[Crossref]
  • [26] E.C. Garnett, P.D. Yang, Silicon nanowire radial p-n junction solar cells, J Am Chem Soc, 130 (2008) 9224-+.[Crossref]
  • [27] M.Y. Bashouti, T. Stelzner, A. Berger, S. Christiansen, H.Haick, Chemical Passivation of Silicon Nanowires with C(1)-C(6) Alkyl Chains through Covalent Si-C Bonds, J Phys Chem C, 112 (2008) 19168-19172.
  • [28] M.Y. Bashouti, T. Stelzner, S. Christiansen, H. Haick, Covalent Attachment of Alkyl Functionality to 50 nm Silicon Nanowires through a Chlorination/Alkylation Process, J Phys Chem C, 113 (2009) 14823-14828.[Crossref]
  • [29] J.S. Jie, W.J. Zhang, K.Q. Peng, G.D. Yuan, C.S. Lee, S.T.Lee, Surface-Dominated Transport Properties of Silicon Nanowires, Adv Funct Mater, 18 (2008) 3251-3257.[Crossref]
  • [30] J. Terry, M.R. Linford, C. Wigren, R.Y. Cao, P. Pianetta, C.E.D.Chidsey, Determination of the bonding of alkyl monolayers to the Si(111) surface using chemical-shift, scanned-energy photoelectron diffraction, Appl Phys Lett, 71 (1997) 1056-1058.
  • [31] F. Effenberger, G. Gotz, B. Bidlingmaier, M. Wezstein, Photoactivated preparation and patterning of self-assembled monolayers with 1-alkenes and aldehydes on silicon hydride surfaces, Angew Chem Int Edit, 37 (1998) 2462-2464.
  • [32] A.B. Sieval, R. Linke, G. Heij, G. Meijer, H. Zuilhof, E.J.R.Sudholter, Amino-terminated organic monolayers on hydrogen-terminated silicon surfaces, Langmuir, 17 (2001) 7554-7559.[Crossref]
  • [33] R.S. Wagner, W.C. Ellis, Vapor-Liquid-Solid Mechanism of Single Crystal Growth ( New Method Growth Catalysis from Impurity Whisker Epitaxial + Large Crystals Si E ), Appl Phys Lett, 4 (1964) 89-&. [Crossref]
  • [34] A. Bansal, X.L. Li, S.I. Yi, W.H. Weinberg, N.S. Lewis, Spectroscopic studies of the modification of crystalline Si(111) surfaces with covalently-attached alkyl chains using a chlorination/alkylation method, J Phys Chem B, 105 (2001) 10266-10277.
  • [35] F.J. Himpsel, F.R. Mcfeely, A. Talebibrahimi, J.A. Yarmoff, G. Hollinger, Microscopic Structure of the Sio2/Si Interface, Phys Rev B, 38 (1988) 6084-6096.[Crossref]
  • [36] F.J. Himpsel, A. Talebibrahimi, J.A. Yarmoff, G. Hollinger, Microscopic Structure of the Sio2/Si Interface, J Electrochem Soc, 135 (1988) C136-C136.
  • [37] M.Y. Bashouti, K. Sardashti, J. Ristein, S.H. Christiansen, Early stages of oxide growth in H-terminated silicon nanowires: determination of kinetic behavior and activation energy, Phys Chem Chem Phys, 14 (2012) 11877-11881.[Crossref]
  • [38] M. Bashouti, K. Sardashti, J. Ristein, S. Christiansen,.Kinetic study of H-terminated silicon nanowires oxidation in very first stages, Nanoscale res. lett, 8 (1), 41 (2013)
  • [39] T.K. Whidden, P. Thanikasalam, M.J. Rack, D.K. Ferry, Initial Oxidation of Silicon(100) - a Unified Chemical-Model for Thin and Thick Oxide-Growth Rates and Interfacial Structure, J Vac Sci Technol B, 13 (1995) 1618-1625.
  • [40] D.D.D. Ma, C.S. Lee, F.C.K. Au, S.Y. Tong, S.T. Lee, Smalldiameter silicon nanowire surfaces, Science, 299 (2003) 1874-1877.[Crossref]
  • [41] D.B. Mawhinney, J.A. Glass, J.T. Yates, FTIR study of the oxidation of porous silicon, J Phys Chem B, 101 (1997) 1202-1206.[Crossref]
  • [42] R.H. Tian, O. Seitz, M. Li, W.C. Hu, Y.J. Chabal, J.M. Gao, Infrared Characterization of Interfacial Si-O Bond Formation on Silanized Flat SiO2/Si Surfaces, Langmuir, 26 (2010) 4563-4566.[Crossref]
  • [43] D.K. Schwartz, Mechanisms and kinetics of self-assembled monolayer formation, Annu Rev Phys Chem, 52 (2001) 107-137.[Crossref]
  • [44] R.G. Nuzzo, B.R. Zegarski, L.H. Dubois, Fundamental- Studies of the Chemisorption of Organosulfur Compounds on Au(111) - Implications for Molecular Self-Assembly on Gold Surfaces, J Am Chem Soc, 109 (1987) 733-740.
  • [45] V.A. Sivakov, R. Scholz, F. Syrowatka, F. Falk, U. Gosele, S.H. Christiansen, Silicon nanowire oxidation: the influence of sidewall structure and gold distribution, Nanotechnology, 20 (2009).[Crossref]
  • [46] M.Y. Bashouti, Y. Paska, S.R. Puniredd, T. Stelzner, S.Christiansen, H. Haick, Silicon nanowires terminated with methyl functionalities exhibit stronger Si-C bonds than equivalent 2D surfaces, Phys Chem Chem Phys, 11 (2009) 3845-3848.[Crossref]
  • [47] O. Assad, S.R. Puniredd, T. Stelzner, S. Christiansen, H.Haick, Stable Scaffolds for Reacting Si Nanowires with Further Organic Functionalities while Preserving Si-C Passivation of Surface Sites, J Am Chem Soc, 130 (2008) 17670-+.[Crossref]
  • [48] S.R. Puniredd, O. Assad, H. Haick, Highly stable organic monolayers for reacting silicon with further functionalities: The effect of the C-C bond nearest the silicon surface, J Am Chem Soc, 130 (2008) 13727-13734.[Crossref]
  • [49] S.R. Puniredd, O. Assad, T. Stelzner, S. Christiansen, H. Haick, Catalyst-Free Functionalization for Versatile Modification of Nonoxidized Silicon Structures, Langmuir, 27 (2011) 4764-4771.[Crossref]
  • [50] M. Y. Bashouti, M. Pietsch, G. Brönstrup, V. Sivakov, Jürgen Ristein, S. Christiansen, Hybrid polymer / silicon nanowire solar cell with high efficiency through covalent Si-C terminated surface passivation. Prog. Photovolt: Res. Appl., (2013). (Online).
  • [51] M.C. Putnam, S.W. Boettcher, M.D. Kelzenberg, D.B. Turner- Evans, J.M. Spurgeon, E.L. Warren, R.M. Briggs, N.S. Lewis, H.A. Atwater, Si microwire-array solar cells, Energ Environ Sci, 3 (2010) 1037-1041.[Crossref]
  • [52] B.Z. Tian, X.L. Zheng, T.J. Kempa, Y. Fang, N.F. Yu, G.H. Yu, J.L. Huang, C.M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources, Nature, 449 (2007) 885-U888.[Crossref]
  • [53] S. Maldonado, D. Knapp, N.S. Lewis, Near-ideal photodiodes from sintered gold nanoparticle films on methyl-terminated Si(111) surfaces, J Am Chem Soc, 130 (2008) 3300-+.
  • [54] M. Ambrico, P. F. Ambrico, R, di Mundo, Electrical transport Features of SiNWs Random Network on Si Support After Covalent Attachment of New Organic Functionalities, Nanomater. Nanotechnol, 2, (2012), 1-8.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.