Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2014 | 15 | 1 | 4-11

Article title

Practice effects on fast and accurate spatially constrained movements


Title variants

Languages of publication



Purpose. The effects of practice were analyzed in the control of fast and accurate spatially constrained movements. Methods. Twenty men (20-26 years old) evenly divided into an experimental and control group were analyzed in three time periods: pre-test, post-test, and retention. Discrete Aiming Task ver. 2.0 software simulated Fitts’ task (1954) and provided kinematic analysis of mouse cursor movements (displacement, velocity, and acceleration). The task consisted of using the mouse to click on two parallel targets as fast and accurately as possible. Four target widths (W = 2.0, 1.0, 0.5, and 2.5 inches) and three distances between the targets (D = 2.0, 4.0, and 8.0 inches) were used to provide indexes of difficulty (ID) from 1 to 6 bits. The experimental group performed 108 practice trials (three blocks of 36 trials on different days) while the control group had no practice. Results. Movement time (MT) decreased in the experimental group largely due in part to a reduction of time used for feedback. It is suggested that the improvement in performance as a function of practice occurred through the interdependence of programming and the feedback process. As the task was practiced, there was decreased need for feedback due to better pre-programming of the primary submovement and the improved use of sensorial feedback information. This strategy and a lengthened deceleration phase can help explain the paradigm of fast and accurate movement as a result of practice. Conclusions. Despite the improved performance changes as a consequence of practice, Fitts’ Law proved to be robust enough to predict MT as a function of ID.










Physical description


1 - 3 - 2014
12 - 4 - 2014


  • University of São Paulo, Human Motor System Laboratory (SMH), São Paulo-SP, Brazil
  • State University of Londrina, Research Group of Motor Development and Learning (GEPEDAM), Londrina-PR, Brazil
  • State University of Londrina, Motor Neurosciences (NEMO) & Tutorial Educational Program (PET), Londrina-PR, Brazil


  • 1. Fitts P.M., The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol, 1954, 47 (6), 381-391, doi: 10.1037/h0055392.[Crossref]
  • 2. Fitts P.M., Peterson J.R., Information capacity of discrete motor responses. J Exp Psychol, 1964, 67 (2), 103-112, doi: 10.1037/h0045689.[Crossref][PubMed]
  • 3. MacKenzie C.L., Marteniuk R.G., Dugas C., Liske D., Eickmeier B., Three-dimensional movement trajectories in Fitts’ task: Implications for control. Q J Exp Psychol, 1987, 39A (4), 629-647, doi:10.1080/14640748708401806.[Crossref]
  • 4. Bootsma R.J., Marteniuk R.G., MacKenzie C.L., Zaal F.T.J.M., The speed-accuracy trade-off in manual prehension: Effects of movement amplitude, object size and object width on kinematic characteristics. Exp Brain Res, 1994, 98 (3), 535-541, doi: 10.1007/BF00233990.[Crossref]
  • 5. Marteniuk R.G., Leavitt J.L., MacKenzie C.L., Athenes S., Functional relationships between grasp and transport components in a prehension task. Hum Mov Sci, 1990, 9 (2), 149-176, doi: 10.1016/0167-9457(90)90025-9.[Crossref]
  • 6. Accot J., Zhai S., Refining Fitts’ Law Models for bivariate pointing. Computer-Human Interaction Letters, 2003, 5 (1), 193-200, doi: 10.1145/642611.642646.[Crossref]
  • 7. McGuffin M., Blakrishnan R., Acquisition of expanding targets. Letters Computer-Human Interaction, 2002, 4 (1), 57-64, doi: 10.1145/503376.503388.[Crossref]
  • 8. Okazaki V.H.A., Brandalize D., Okazaki N.K., Drabovski B., Ladewig I., Speed-accuracy tradeoff in drawing tasks [in Portuguese]. Rev Bras Cie Esp, 2011, 33, 249-264.[Crossref]
  • 9. Okazaki V.H.A., Fiuza C.R., Silva R.R., Dascal J.B., Ladewig I., Speed-accuracy trade-off in drawing geometric figures and lines [in Portuguese]. Rev Ed Fis (UEM), 2011, 22, 337-347.
  • 10. Jagacinski R.J., Repperger D.W., Ward S.L., Moran M.S., A test of Fitts’ law with moving targets. Hum Fact, 1980, 22 (2), 225-233, doi: 10.1177/001872088002200211.[Crossref]
  • 11. Andres R.O., Hartung K.J., Prediction of head movement time using Fitts’ law. Hum Fact, 1989, 31 (6), 703-713.
  • 12. Kelso J.S., Southard D.L., Goodman D., On the coordination of two-handed movements. J Exp Psychol Hum Percept Perform, 1979, 5 (2), 229-238, doi: 10.1037/0096-1523.5.2.229.[PubMed][Crossref]
  • 13. Mottet D., Guiard Y., Ferrand T., Bootsma R.J., Two-handed performance of a rhythmical Fitts’ task by individuals and dyads. J Exp Psychol Hum Percept Perform, 2001, 27 (6), 1275-1286, doi: 10.1037/0096-1523.27.6.1275.[Crossref]
  • 14. Bootsma R.J., Fernandez L., Mottet D., Behind Fitts’ law: kinematic patterns in goal-directed movements. Int J Hum Comput Stud, 2004, 61 (6), 811-821, doi: 10.1016/j. ijhcs.2004.09.004.[Crossref]
  • 15. Crossman E.R.F.W., Goodeve P.J., Feedback control of hand-movement and Fitts’ law. Q J Exp Psychol, 1983, 35A (2), 251-278, doi: 10.1080/14640748308402133.[Crossref]
  • 16. Meyer D.E., Abrams R.A., Kornblum S., Wright C.E., Smith K.J.E., Optimality in human motor performance: Ideal control of rapid aimed movements. Psychol Rev, 1988, 95 (3), 340-370, doi: 10.1037/0033-295X.95.3.340.[Crossref]
  • 17. Zelaznik H.N., Necessary and sufficient conditions for the production of a linear speed accuracy trade-offs in aimed hand movements. In: Newell K.M., Corcos D., Variability and motor control. Human Kinetics, Champaign 1993, 91-115.
  • 18. Schmidt R.A., Zelaznik H.N., Frank J.S., Sources of inaccuracy in rapid movement. In: Stelmach G.E. (ed.), Information processing in motor control and learning. Academic Press, New York 1978, 183-203.
  • 19. Elliott D., Hansen S., Mendonza J., Tremblay L., Learning to optimize speed, accuracy, and energy expenditure: A framework for understanding speed-accuracy relations in goal-directed aiming. J Mot Behav, 2004, 36 (3), 339-351, doi: 10.3200/JMBR.36.3.339-351.[Crossref]
  • 20. Pratt J., Abrams R.A., Practice and component sub-movements: The role of programming and feedback in rapid aimed limb movements. J Mot Behav, 1996, 28 (2), 149-156, doi: 10.1080/00222895.1996.9941741.[Crossref]
  • 21. Teixeira L.A., Coordenação intersegmentar em arremessos com diferentes demandas de precisão. Rev Paul Ed Fis, 1997, 11 (1), 5-14.
  • 22. Teixeira L.A., About the generality of the motor-sensory strategies of control [in Portuguese]. Rev Paul Ed Fis, 2000, 3, 89-96.
  • 23. Proteau L., Marteniuk R.G., Levesque L., A sensorimotor basis for motor learning: Evidence indicating specificity of practice. Q J Exp Psychol, 1992, 44A (3), 557-575, doi: 10.1080/14640749208401298.[Crossref]
  • 24. Khan M.A., Franks I.M., The effect of practice on component submovements is dependent on the availability of visual feedback. J Mot Behav, 2000, 32 (3), 227-240, doi: 10.1080/00222890009601374.[Crossref]
  • 25. Elliott D., Chua R., Pollock B.J., Lyons J., Optimizing the use of vision in manual aiming: The role of practice. Q J Exp Psychol, 1995, 48A (1), 72-83, doi: 10.1080/14640749508401376.[Crossref]
  • 26. Elliott D., Lyons J., Dyson K., Rescaling an acquired discrete aiming movement: Specific or general motor learning? Hum Mov Sci, 1997, 16 (1), 81-96, doi: 10.1016/ S0167-9457(96)00041-3.[Crossref]
  • 27. Plamondon R., Alimi A.M., Speed/accuracy trade-offs in target-directed movements. Behav Brain Sci, 1997, 20 (2), 279-303.[PubMed]
  • 28. Mathias K.R., Candido C.R.C., Faquin B.S., Guidotti F.Jr., Okazaki V.H.A., Control of fast and accurate movements. FIEP Bulletin On-line, 2012, 82 (Special Edition - Article II), 582-584. Available from http://www.fiepbulletin. net/index.php/fiepbulletin/article/view/ 2520.
  • 29. Okazaki V.H.A., Pereira C.F., Okazaki F.H.A., Dascal J.B., Spatial constraints in the motor control of speed and accurate movements [in Portuguese]. Motricidade, 2013, 9 (2), 73-83, doi: 10.6063/motricidade.9(2).2669.[Crossref]
  • 30. Oldfield R.C., The assessment and analysis of hand handedness: The Edinburgh inventory. Neuropsychologia, 1971, 9 (1), 97-113, doi: 10.1016/0028-3932(71)90067-4.[Crossref]
  • 31. Abrams R.A., Pratt J., Rapid aimed limb movements: Differential effects of practice on component submovements. J Mot Behav, 1993, 25 (4), 288-298, doi: 10.1080/00222895.1993.9941650.[Crossref]
  • 32. Schmidt R.A., McCabe J.F., Motor program utilization over extended practice. J Hum Mov Stud, 1976, 2, 239-247.
  • 33. Teixeira L.A., Kinematics of kicking as a function of different sources of constraint on accuracy. Percept Mot Skills, 1999, 88 (3), 785-789, doi: 10.2466/pms.1999.88.3.785.[Crossref][PubMed]
  • 34. Okazaki V.H.A., Rodacki A.L.F., Dezan V.H., Sarraf T.A., Coordination of the basketball jump shot performed by children and adults [in Portuguese]. Braz J Biomech, 2006, 7 (12), 15-22.
  • 35. Okazaki V.H.A., Okazaki F.H.A., Kopp N., Temporal organization of arm movements in accurate throws. Fed Inter D’Ed Phys, 2008, 78, 625-626.
  • 36. Okazaki V.H.A., Lamas L., Okazaki F.H.A., Rodacki A.L.F., The effect of distance increase on basketball shot performed by children [in Portuguese]. Motricidade, 2013, 9 (2), 61-72, doi: 10.6063/motricidade.9(2).2668.[Crossref]
  • 37. Okazaki V.H.A., Rodacki A.L.F., Increased distance of shooting on basketball jump shot. J Sports Sci Med, 2012, 11 (2), 231-237.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.