Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2014 | 1 | 1 |

Article title

Graphene-based Bolometers


Title variants

Languages of publication



To achieve the state-of-the-art photon detectors, extensive research has been carried out on graphene-based bolometers. These utilize graphene’s promising properties including its small heat capacity, weak electron-phonon coupling, and small resistance. This article reviews the recent development of cryogenic graphene-based bolometers, which are of particular interest and importance for understanding as well as for taking advantage of the intrinsic properties of graphene. We summarize the major theoretical and experimental developments in the field, including the phonon cooling mechanism and its dependence on temperature, doping, and disorder, and the experimental approaches for realizing bolometric detectors.We also estimate the ultimate performance of an ideal graphene bolometer as a power detector and a single-photon detector if superconducting contacts are employed.








Physical description


1 - 1 - 2014
20 - 8 - 2013
24 - 4 - 2014
4 - 3 - 2014


  • Department of Physics and Astronomy, Stony Brook University
  • Departments of Applied Physics and Physics, Yale University
  • Department of Physics and Astronomy, Stony Brook University
  • Departments of Applied Physics and Physics, Yale University


  • [1] Benford D. J. and Moseley S. H. Cryogenic detectors for infrared astronomy: the Single Aperture Far-InfraRed (SAFIR) Observatory. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 520, 379-383, doi: http://dx.doi.org/10.1016/j.nima.2003.11.295 (2004).[Crossref]
  • [2] Karasik B. S. and Sergeev A. V. THz hot-electron photon counter. Applied Superconductivity, IEEE Transactions on 15, 618-621, doi:10.1109/tasc.2005.849963 (2005).[Crossref]
  • [3] Hadfeld R. H. Single-photon detectors for optical quantum information applications. Nat Photon 3, 696-705 (2009).[Crossref]
  • [4] Lita A. E., Miller A. J. and Nam S. W. Counting near-infrared single-photons with 95% e_ciency. Opt. Express 16, 3032-3040 (2008).[Crossref]
  • [5] Karasik B. S., Sergeev A. V. and Prober D. E. Nanobolometers for THz Photon Detection. Terahertz Science and Technology, IEEE Transactions on 1, 97-111, doi:10.1109/tthz.2011.2159560 (2011).[Crossref]
  • [6] Yan, J. et al. Dual-gated bilayer graphene hot-electron bolometer. Nat Nano 7, 472-478, doi:http://www. nature.com/nnano/journal/v7/n7/abs/nnano.2012.88. html{#}supplementary-information (2012).[Crossref]
  • [7] Betz A. C. et al. Hot Electron Cooling by Acoustic Phonons in Graphene. Physical Review Letters 109, 056805 (2012).[PubMed]
  • [8] McKitterick C. B., Prober D. E. and Karasik B. S. Performance of graphene thermal photon detectors. Journal of Applied Physics 113, 044512-044516 (2013).
  • [9] Karasik B., McKitterick C. and Prober D. Prospective Performance of Graphene HEB for Ultrasensitive Detection of Submm Radiation. J Low Temp Phys, 1-6, doi:10.1007/s10909-014-1087-7 (2014).[Crossref]
  • [10] Vora H., Kumaravadivel P., Nielsen B. and Du X. Bolometric response in graphene based superconducting tunnel junctions. Applied Physics Letters 100, 153507 (2012).[Crossref]
  • [11] Fong K. C. and Schwab K. C. Ultrasensitive and Wide- Bandwidth Thermal Measurements of Graphene at Low Temperatures. Physical Review X 2, 031006 (2012).[Crossref]
  • [12] Voutilainen J. et al. Energy relaxation in graphene and its measurement with supercurrent. Physical Review B 84, 045419 (2011).
  • [13] Borzenets I. V. et al. Phonon Bottleneck in Graphene-Based Josephson Junctions at Millikelvin Temperatures. Physical Review Letters 111, 027001 (2013).[Crossref][PubMed]
  • [14] Mittendor_ M. et al. Ultrafast graphene-based broadband THz detector. Applied Physics Letters 103, 021113-021114 (2013).[Crossref]
  • [15] Cai X. et al. Sensitive Room-Temperature Terahertz Detection via Photothermoelectric E_ect in Graphene. arXiv:1305.3297 (2013).
  • [16] Fengnian X., Hugen Y. and Avouris P. The Interaction of Light and Graphene: Basics, Devices, and Applications. Proceedings of the IEEE 101, 1717-1731, doi:10.1109/jproc.2013.2250892 (2013).[Crossref]
  • [17] Avouris P. and Xia F. Graphene applications in electronics and photonics. MRS Bulletin 37, 1225-1234 (2012).[Crossref]
  • [18] Santavicca D. F. et al. Energy resolution of terahertz singlephoton- sensitive bolometric detectors. Applied Physics Letters 96, 083505-083503 (2010).[Crossref]
  • [19] Cabrera B. Introduction to TES Physics. J Low Temp Phys 151, 82-93, doi:10.1007/s10909-007-9632-2 (2008).[Crossref]
  • [20] Prober D. E. Superconducting terahertz mixer using a transition-edge microbolometer. Applied Physics Letters 62, 2119-2121 (1993).
  • [21] Burke P. J. et al. Length scaling of bandwidth and noise in hotelectron superconducting mixers. Applied Physics Letters 68, 3344-3346 (1996).
  • [22] Tinkham M. Introduction to Superconductivity Second Edition edn, (Dover Publications, 2004). [23] Karasik B. S. et al. Energy-resolved detection of single infrared photons with lambda = 8 mu m using a superconducting microbolometer. Applied Physics Letters 101, 052601-052605 (2012).
  • [24] Mather J. C. Bolometer noise: nonequilibrium theory. Appl. Opt. 21, 1125-1129 (1982).[PubMed]
  • [25] Day P. K., LeDuc H. G., Mazin B. A., Vayonakis A. and Zmuidzinas J. A broadband superconducting detector suitable for use in large arrays. Nature 425, 817-821 (2003).
  • [26] Richards P. L. Bolometers for infrared and millimeter waves. Journal of Applied Physics 76, 1 (1994).
  • [27] Chudow J. D., Santavicca D. F., McKitterick C. B., Prober D. E. and Kim P. Terahertz detection mechanism and contact capacitance of individual metallic single-walled carbon nanotubes. Applied Physics Letters 100, 163503-163505 (2012).[Crossref]
  • [28] Castro Neto A. H., Guinea F., Peres N. M. R., Novoselov K. S. and Geim A. K. The electronic properties of graphene. Reviews of Modern Physics 81, doi:10.1103/RevModPhys.81.109 (2009).[Crossref]
  • [29] Beenakker C. W. J. Colloquium: Andreev reflection and Klein tunneling in graphene. Reviews of Modern Physics 80, 1337-1354 (2008).
  • [30] Stauber T., Peres N. M. R. and Guinea F. Electronic transport in graphene: A semiclassical approach including midgap states. Physical Review B 76, 205423 (2007).
  • [31] Ando T. Screening E_ect and Impurity Scattering in Monolayer Graphene. Journal of the Physical Society of Japan 75, 074716 (2006).
  • [32] Vasko F. T. and Ryzhii V. Voltage and temperature dependencies of conductivity in gated graphene. Physical Review B 76, 233404 (2007).[Crossref]
  • [33] Katsnelson M. I. and Geim A. K. Electron scattering on microscopic corrugations in graphene. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366, 195-204, doi:10.1098/rsta.2007.2157 (2008).[Crossref]
  • [34] Morozov S. V. et al. Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer. Physical Review Letters 100, 016602 (2008).[PubMed][Crossref]
  • [35] Bistritzer R. and MacDonald A. H. Electronic Cooling in Graphene. Physical Review Letters 102, 206410 (2009).[PubMed][Crossref]
  • [36] Tse W.-K. and Das Sarma S. Energy relaxation of hot Dirac fermions in graphene. Physical Review B 79, 235406 (2009).
  • [37] Song J. C. W., Reizer M. Y. and Levitov L. S. Disorder-Assisted Electron-Phonon Scattering and Cooling Pathways in Graphene. Physical Review Letters 109, 106602 (2012).[PubMed]
  • [38] Castro E. V. et al. Limits on Charge Carrier Mobility in Suspended Graphene due to Flexural Phonons. Physical Review Letters 105, 266601 (2010).[Crossref][PubMed]
  • [39] Ochoa H., Castro E. V., Katsnelson M. I. and Guinea F. Temperature-dependent resistivity in bilayer graphene due to flexural phonons. Physical Review B 83, 235416 (2011).
  • [40] Chen J.-H., Jang C., Xiao S., Ishigami M. and Fuhrer M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nano 3, 206-209, doi:
  • http://www.nature.com/nnano/journal/v3/n4/suppinfo/nnano.2008.58_S1.html (2008).
  • [41] Chen W. and Clerk A. A. Electron-phonon mediated heat flow in disordered graphene. Physical Review B 86, 125443 (2012).
  • [42] Dawlaty J. M., Shivaraman S., Chandrashekhar M., Rana F. and Spencer M. G. Measurement of ultrafast carrier dynamics in epitaxial graphene. Applied Physics Letters 92, 042116 (2008).
  • [43] Sun D. et al. Ultrafast Relaxation of Excited Dirac Fermions in Epitaxial Graphene Using Optical Di_erential Transmission Spectroscopy. Physical Review Letters 101, 157402 (2008).[Crossref]
  • [44] Hwang E. H. and Das Sarma S. Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene. Physical Review B 77, 115449 (2008).[Crossref]
  • [45] Efetov D. K. and Kim P. Controlling Electron-Phonon Interactions in Graphene at Ultrahigh Carrier Densities. Physical Review Letters 105, 256805 (2010).[PubMed][Crossref]
  • [46] Kubakaddi S. S. Interaction of massless Dirac electrons with acoustic phonons in graphene at low temperatures. Physical Review B 79, 075417 (2009).
  • [47] Viljas J. K. and Heikkilä T. T. Electron-phonon heat transfer in monolayer and bilayer graphene. Physical Review B 81, 245404 (2010).[Crossref]
  • [48] Min H., Hwang E. H. and Das Sarma S. Chirality-dependent phonon-limited resistivity in multiple layers of graphene. Physical Review B 83, 161404 (2011).
  • [49] Betz A. C. et al. Supercollision cooling in undoped graphene. Nat Phys 9, 109-112 (2013).
  • [50] Graham M. W., Shi S.-F., Ralph D. C., Park J. and McEuen P. L. Photocurrent measurements of supercollision cooling in graphene. Nat Phys 9, 103-108, doi:http://www. nature.com/nphys/journal/v9/n2/abs/nphys2493. html{#}supplementary-information (2013).
  • [51] McKitterick C. B., Vora H., Du X., Karasik B. S. and Prober D. E. Graphene microbolometers with superconducting contacts for terahertz photon detection. arXiv preprint arXiv:1307.5012 (2013, to appear in J. Low Temperature Physics (2014)).
  • [52] Castro E. V. et al. Biased Bilayer Graphene: Semiconductor with a Gap Tunable by the Electric Field E_ect. Physical Review Letters 99, 216802 (2007).
  • [53] Dicke R. H. The Measurement of Thermal Radiation at Microwave Frequencies. Review of Scienti_c Instruments 17, 268-275 (1946).
  • [54] Horng J. et al. Drude conductivity of Dirac fermions in graphene. Physical Review B 83, 165113 (2011).
  • [55] Letzter S. and Webster N. Noise in Ampli_ers. IEEE Spectrum 7, 67 (1970).[Crossref]
  • [56] Martin J. et al. Observation of electron-hole puddles in graphene using a scanning single electron transistor. Nature Physics 4, 144, doi:10.1038/nphys781 (2007).[Crossref]
  • [57] Andreev A. F. The thermal conductivity of the intermediate state in superconductors. Sov. Phys. JETP 19, 1228 (1964).
  • [58] Wei J. et al. Ultrasensitive hot-electron nanobolometers for terahertz astrophysics. Nat Nano 3, 496-500 (2008).[Crossref]
  • [59] Vora H., Mizuno N., Kumaravadivel P., Nielsen B. and Du X. Graphene-Superconductor hybrid device as Bolometer. Bulletin of the American Physical Society 58 (2013).
  • [60] Vora H. Graphene-Superconductor hybrid device as Bolometer (APS March meeting, Baltimore, Maryland, 2013).
  • [61] Karasik B. S. and Cantor R. Demonstration of high optical sensitivity in far-infrared hot-electron bolometer. Applied Physics Letters 98, -, doi:doi:http://dx.doi.org/10.1063/1. 3589367 (2011).[Crossref]
  • [62] Visser P. J. d., Baselmans J. J. A., Bueno J., Llombart N. and Klapwijk T. M. Fluctuations in the electron system of a superconductor exposed to a photon flux. arXiv:1306.4238 (2013).

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.