Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2013 | 1 | 1 |

Article title

Advances in the Genetics and Epigenetics of
Neurodegenerative Diseases



Title variants

Languages of publication



Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral
sclerosis (ALS) and Huntington’s disease (HD) represent four of the major
neurodegenerative diseases. AD, PD and ALS are complex disorders
including both Mendelian and sporadic forms. Studies on families with
these diseases led to the identification of several genes and pathways
responsible for the familial forms. Those studies have been paralleled
by hundreds of genetic association studies, including genome-wide
screenings, in order to identify genes likely contributing to the sporadic
forms. HD is a monogenic disorder caused by a trinucleotide repeat
expansion in the causative gene. Increasing evidence points to an
epigenetic contribution to neurodegeneration, suggesting that DNA
methylation, histone tail modifications and RNA mediated mechanisms
might contribute to the onset and progression of all the above diseases. In
addition, epigenetic drugs are promising for the restoration of memory and
motor impairments in animal models of the diseases. The aim of this review
article is to provide an updated overview of the genetics and epigenetics of
these major neurodegenerative disorders.







Physical description


14 - 1 - 2013
17 - 8 - 2012
3 - 12 - 2012


  • Department of Laboratory Medicine, Pisa University Hospital,
    Via S. Giuseppe 22, 56126 Pisa, ITALY


  • Santos-Rebouças CB, Pimentel MM. Implication of abnormalepigenetic patterns for human diseases. Eur J Hum Genet.2007 Jan;15(1):10-7.[Crossref]
  • Jakovcevski M, Akbarian S. Epigenetic mechanisms inneurological disease. Nat Med. 2012 Aug;18(8):1194-204.[Crossref][PubMed]
  • Coppedè F. Epigenetic biomarkers of colorectal cancer:Focus on DNA methylation. Cancer Lett. 2011 Dec 24. [Epubahead of print].
  • Popovic R, Licht JD. Emerging epigenetic targets andtherapies in cancer medicine. Cancer Discov. 2012May;2(5):405-13.[PubMed][Crossref]
  • Alzheimer’s Disease International. World Alzheimer Report2009.
  • Klucken J, McLean PJ, Gomez-Tortosa E, Ingelsson M,Hyman BT. Neuritic alterations and neural system dysfunctionin Alzheimer’s disease and dementia with Lewy bodies.Neurochem Res. 2003 Nov;28(11):1683-91.[PubMed][Crossref]
  • Xia W. Role of presenilin in gamma-secretase cleavage of amyloidprecursor protein. Exp Gerontol. 2000 Jul;35(4):453-60.[Crossref][PubMed]
  • Vassar R. BACE1: the beta-secretase enzyme in Alzheimer’sdisease. J Mol Neurosci. 2004;23(1-2):105-14.[Crossref]
  • Chiang PK, Lam MA, Luo Y. The many faces of amyloid betain Alzheimer’s disease. Curr Mol Med. 2008 Sep;8(6):580-4.[Crossref]
  • Bertram L, Tanzi RE. The genetics of Alzheimer’s disease.Prog Mol Biol Transl Sci. 2012; 107:79-100.[Crossref]
  • Ertekin-Taner N. Genetics of Alzheimer disease in thepre- and post-GWAS era. Alzheimers Res Ther. 2010 Mar5;2(1):3.[Crossref]
  • Migliore L, Coppedè F. Genetics, environmental factorsand the emerging role of epigenetics in neurodegenerativediseases. Mutat Res. 2009 Jul 10;667(1-2):82-97.
  • Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE.Systematic meta-analyses of Alzheimer disease geneticassociation studies: the AlzGene database. Nat Genet. 2007Jan;39(1):17-23.[PubMed][Crossref]
  • Gerrish A, Russo G, Richards A, Moskvina V, Ivanov D,Harold D, Sims R, Abraham R, Hollingworth P, ChapmanJ, Hamshere M, Pahwa JS, Dowzell K, Williams A, JonesN, Thomas C, Stretton A, Morgan AR, Lovestone S, PowellJ, Proitsi P, Lupton MK, Brayne C, Rubinsztein DC, Gill M,Lawlor B, Lynch A, Morgan K, Brown KS, Passmore PA,Craig D, McGuinness B, Todd S, Johnston JA, Holmes C,Mann D, Smith AD, Love S, Kehoe PG, Hardy J, Mead S, FoxN, Rossor M, Collinge J, Maier W, Jessen F, Kölsch H, HeunR, Schürmann B, van den Bussche H, Heuser I, Kornhuber J,Wiltfang J, Dichgans M, Frölich L, Hampel H, Hüll M, RujescuD, Goate AM, Kauwe JS, Cruchaga C, Nowotny P, MorrisJC, Mayo K, Livingston G, Bass NJ, Gurling H, McQuillinA, Gwilliam R, Deloukas P, Davies G, Harris SE, Starr JM,Deary IJ, Al-Chalabi A, Shaw CE, Tsolaki M, Singleton AB, Guerreiro R, Mühleisen TW, Nöthen MM, Moebus S, JöckelKH, Klopp N, Wichmann HE, Carrasquillo MM, Pankratz VS,Younkin SG, Jones L, Holmans PA, O’Donovan MC, OwenMJ, Williams J. The role of variation at AβPP, PSEN1, PSEN2,and MAPT in late onset Alzheimer’s disease. J AlzheimersDis. 2012;28(2):377-87.
  • Cruchaga C, Haller G, Chakraverty S, Mayo K, Vallania FL,Mitra RD, Faber K, Williamson J, Bird T, Diaz-Arrastia R,Foroud TM, Boeve BF, Graff-Radford NR, St Jean P, LawsonM, Ehm MG, Mayeux R, Goate AM; NIA-LOAD/NCRADFamily Study Consortium. Rare variants in APP, PSEN1 andPSEN2 increase risk for AD in late-onset Alzheimer’s diseasefamilies. PLoS One. 2012;7(2):e31039.[Crossref]
  • Hooli BV, Mohapatra G, Mattheisen M, Parrado AR, RoehrJT, Shen Y, Gusella JF, Moir R, Saunders AJ, Lange C,Tanzi RE, Bertram L. Role of common and rare APP DNAsequence variants in Alzheimer disease. Neurology. 2012 Apr17;78(16):1250-7.[Crossref]
  • Lambert JC, Grenier-Boley B, Harold D, Zelenika D, ChourakiV, Kamatani Y, Sleegers K, Ikram MA, Hiltunen M, Reitz C,Mateo I, Feulner T, Bullido M, Galimberti D, Concari L, AlvarezV, Sims R, Gerrish A, Chapman J, Deniz-Naranjo C, SolfrizziV, Sorbi S, Arosio B, Spalletta G, Siciliano G, Epelbaum J,Hannequin D, Dartigues JF, Tzourio C, Berr C, Schrijvers EM,Rogers R, Tosto G, Pasquier F, Bettens K, Van CauwenbergheC, Fratiglioni L, Graff C, Delepine M, Ferri R, Reynolds CA,Lannfelt L, Ingelsson M, Prince JA, Chillotti C, Pilotto A, SeripaD, Boland A, Mancuso M, Bossù P, Annoni G, Nacmias B,Bosco P, Panza F, Sanchez-Garcia F, Del Zompo M, CotoE, Owen M, O’Donovan M, Valdivieso F, Caffara P, ScarpiniE, Combarros O, Buée L, Campion D, Soininen H, BretelerM, Riemenschneider M, Van Broeckhoven C, Alpérovitch A,Lathrop M, Trégouët DA, Williams J, Amouyel P. Genome-widehaplotype association study identifies the FRMD4A gene as arisk locus for Alzheimer’s disease. Mol Psychiatry. 2012 Mar20. doi: 10.1038/mp.2012.14. [Epub ahead of print][Crossref]
  • Naj AC, Beecham GW, Martin ER, Gallins PJ, Powell EH,Konidari I, Whitehead PL, Cai G, Haroutunian V, Scott WK,Vance JM, Slifer MA, Gwirtsman HE, Gilbert JR, HainesJL, Buxbaum JD, Pericak-Vance MA. Dementia revealed:novel chromosome 6 locus for late-onset Alzheimer diseaseprovides genetic evidence for folate-pathway abnormalities.PLoS Genet. 2010 Sep 23;6(9). pii: e1001130.[Crossref]
  • Laumet G, Chouraki V, Grenier-Boley B, Legry V, Heath S,Zelenika D, Fievet N, Hannequin D, Delepine M, Pasquier F,Hanon O, Brice A, Epelbaum J, Berr C, Dartigues JF, TzourioC, Campion D, Lathrop M, Bertram L, Amouyel P, LambertJC. Systematic analysis of candidate genes for Alzheimer’sdisease in a French, genome-wide association study. JAlzheimers Dis. 2010;20(4):1181-8.
  • Hua Y, Zhao H, Kong Y, Ye M. Association between theMTHFR gene and Alzheimer’s disease: a meta-analysis. Int JNeurosci. 2011 Aug;121(8):462-71.[Crossref]
  • Coppedè F, Tannorella P, Pezzini I, Migheli F, Ricci G,Caldarazzo Lenco E, Piaceri I, Polini A, Nacmias B, Monzani F, Sorbi S, Siciliano G, Migliore L. Folate, homocysteine,vitamin B12, and polymorphisms of genes participating inone-carbon metabolism in late-onset Alzheimer’s diseasepatients and healthy controls. Antioxid Redox Signal. 2012Jul 15;17(2):195-204.
  • Mastroeni D, Grover A, Delvaux E, Whiteside C, Coleman PD,Rogers J. Epigenetic mechanisms in Alzheimer’s disease.Neurobiol Aging. 2011 Jul;32(7):1161-80.[Crossref][PubMed]
  • Thomas B, Beal MF. Molecular insights into Parkinson’sdisease. F1000 Med Rep. 2011;3:7.
  • Nuytemans K, Theuns J, Cruts M, Van Broeckhoven C.Genetic etiology of Parkinson disease associated withmutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2genes: a mutation update. Hum Mutat. 2010 Jul;31(7):763-80.
  • Ramirez A, Heimbach A, Gründemann J, Stiller B, HampshireD, Cid LP, Goebel I, Mubaidin AF, Wriekat AL, Roeper J, Al-Din A, Hillmer AM, Karsak M, Liss B, Woods CG, BehrensMI, Kubisch C. Hereditary parkinsonism with dementia iscaused by mutations in ATP13A2, encoding a lysosomal type5 P-type ATPase. Nat Genet. 2006 Oct;38(10):1184-91.[Crossref]
  • Abeliovich A, Schmitz Y, Fariñas I, Choi-Lundberg D, HoWH, Castillo PE, Shinsky N, Verdugo JM, Armanini M, RyanA, Hynes M, Phillips H, Sulzer D, Rosenthal A. Mice lackingalpha-synuclein display functional deficits in the nigrostriataldopamine system. Neuron. 2000 Jan;25(1):239-52.[Crossref][PubMed]
  • Liu S, Ninan I, Antonova I, Battaglia F, Trinchese F, NarasannaA, Kolodilov N, Dauer W, Hawkins RD, Arancio O. alpha-Synuclein produces a long-lasting increase in neurotransmitterrelease. EMBO J. 2004 Nov 10;23(22):4506-16.[Crossref]
  • Hardy J. Genetic analysis of pathways to Parkinson disease.Neuron. 2010 Oct 21;68(2):201-6.[Crossref]
  • Liu G, Aliaga L, Cai H. α-synuclein, LRRK2 and their interplayin Parkinson’s disease. Future Neurol. 2012 Mar;7(2):145-153.[PubMed]
  • Pilsl A, Winklhofer KF. Parkin, PINK1 and mitochondrialintegrity: emerging concepts of mitochondrial dysfunction inParkinson’s disease. Acta Neuropathol. 2012 Feb;123(2):173-88.[PubMed][Crossref]
  • Xiong H, Wang D, Chen L, Choo YS, Ma H, Tang C, Xia K,Jiang W, Ronai Z, Zhuang X, Zhang Z. Parkin, PINK1, andDJ-1 form a ubiquitin E3 ligase complex promoting unfoldedprotein degradation. J Clin Invest. 2009 Mar;119(3):650-60.
  • Thomas KJ, McCoy MK, Blackinton J, Beilina A, van derBrug M, Sandebring A, Miller D, Maric D, Cedazo-MinguezA, Cookson MR. DJ-1 acts in parallel to the PINK1/parkinpathway to control mitochondrial function and autophagy.Hum Mol Genet. 2011 Jan 1;20(1):40-50.[Crossref]
  • Coppedè F. Genetics and epigenetics of Parkinson’s disease.ScientificWorldJournal. 2012;2012:489830.
  • Lill CM, Roehr JT, McQueen MB, Kavvoura FK, Bagade S,Schjeide BM, Schjeide LM, Meissner E, Zauft U, Allen NC, LiuT, Schilling M, Anderson KJ, Beecham G, Berg D, BiernackaJM, Brice A, DeStefano AL, Do CB, Eriksson N, Factor SA,Farrer MJ, Foroud T, Gasser T, Hamza T, Hardy JA, Heutink P, Hill-Burns EM, Klein C, Latourelle JC, Maraganore DM,Martin ER, Martinez M, Myers RH, Nalls MA, Pankratz N,Payami H, Satake W, Scott WK, Sharma M, Singleton AB,Stefansson K, Toda T, Tung JY, Vance J, Wood NW, ZabetianCP; 23andMe Genetic Epidemiology of Parkinson’s DiseaseConsortium; International Parkinson’s Disease GenomicsConsortium; Parkinson’s Disease GWAS Consortium;Wellcome Trust Case Control Consortium 2), Young P, TanziRE, Khoury MJ, Zipp F, Lehrach H, Ioannidis JP, Bertram L.Comprehensive research synopsis and systematic metaanalysesin Parkinson’s disease genetics: The PDGenedatabase. PLoS Genet. 2012 Mar;8(3):e1002548.
  • Tayebi N, Walker J, Stubblefield B, Orvisky E, LaMarca ME,Wong K, Rosenbaum H, Schiffmann R, Bembi B, SidranskyE. Gaucher disease with parkinsonian manifestations: doesglucocerebrosidase deficiency contribute to a vulnerability toparkinsonism? Mol Genet Metab. 2003 Jun;79(2):104-9.[Crossref][PubMed]
  • Westbroek W, Gustafson AM, Sidransky E. Exploring the linkbetween glucocerebrosidase mutations and parkinsonism.Trends Mol Med. 2011 Sep;17(9):485-93.[Crossref][PubMed]
  • van der Mark M, Brouwer M, Kromhout H, Nijssen P, Huss A,Vermeulen R. Is pesticide use related to Parkinson disease?Some clues to heterogeneity in study results. Environ HealthPerspect. 2012 Mar;120(3):340-7.
  • Campdelacreu J. Parkinson disease and Alzheimer disease:environmental risk factors. Neurologia. 2012 Jun 13. [Epubahead of print]
  • Hancock DB, Martin ER, Stajich JM, Jewett R, StacyMA, Scott BL, Vance JM, Scott WK. Smoking, caffeine,and nonsteroidal anti-inflammatory drugs in families withParkinson disease. Arch Neurol. 2007 Apr;64(4):576-80.[Crossref][PubMed]
  • Traub R, Mitsumoto H, Rowland LP. Research advancesin amyotrophic lateral sclerosis, 2009 to 2010. Curr NeurolNeurosci Rep. 2011 Feb;11(1):67-77.
  • Miller RG, Mitchell JD, Moore DH. Riluzole for amyotrophiclateral sclerosis (ALS)/motor neuron disease (MND).Cochrane Database Syst Rev. 2012 Mar 14;3:CD001447.
  • Morris HR, Waite AJ, Williams NM, Neal JW, Blake DJ.Recent advances in the genetics of the ALS-FTLD complex.Curr Neurol Neurosci Rep. 2012 Jun;12(3):243-50.[Crossref][PubMed]
  • Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, RogeljB, Ackerley S, Durnall JC, Williams KL, Buratti E, Baralle F,de Belleroche J, Mitchell JD, Leigh PN, Al-Chalabi A, MillerCC, Nicholson G, Shaw CE. TDP-43 mutations in familial andsporadic amyotrophic lateral sclerosis. Science. 2008 Mar21;319(5870):1668-72.
  • Geser F, Lee VM, Trojanowski JQ. Amyotrophic lateralsclerosis and frontotemporal lobar degeneration: aspectrum of TDP-43 proteinopathies. Neuropathology. 2010Apr;30(2):103-12.[Crossref]
  • Ince PG, Highley JR, Kirby J, Wharton SB, Takahashi H,Strong MJ, Shaw PJ. Molecular pathology and geneticadvances in amyotrophic lateral sclerosis: an emergingmolecular pathway and the significance of glial pathology.Acta Neuropathol. 2011 Dec;122(6):657-71.[PubMed][Crossref]
  • Rosen DR, Siddique T, Patterson D, Figlewicz DA, SappP, Hentati A, Donaldson D, Goto J, O’Regan JP, Deng HX,et al. Mutations in Cu/Zn superoxide dismutase gene areassociated with familial amyotrophic lateral sclerosis. Nature.1993 Mar 4;362(6415):59-62.
  • Carrì MT, Cozzolino M. SOD1 and mitochondria inALS: a dangerous liaison. J Bioenerg Biomembr. 2011Dec;43(6):593-9.[Crossref]
  • Kwiatkowski TJ Jr, Bosco DA, Leclerc AL, Tamrazian E,Vanderburg CR, Russ C, Davis A, Gilchrist J, Kasarskis EJ,Munsat T, Valdmanis P, Rouleau GA, Hosler BA, Cortelli P, deJong PJ, Yoshinaga Y, Haines JL, Pericak-Vance MA, Yan J,Ticozzi N, Siddique T, McKenna-Yasek D, Sapp PC, HorvitzHR, Landers JE, Brown RH Jr. Mutations in the FUS/TLSgene on chromosome 16 cause familial amyotrophic lateralsclerosis. Science. 2009 Feb 27;323(5918):1205-8.
  • Vance C, Rogelj B, Hortobágyi T, De Vos KJ, NishimuraAL, Sreedharan J, Hu X, Smith B, Ruddy D, Wright P,Ganesalingam J, Williams KL, Tripathi V, Al-Saraj S, Al-ChalabiA, Leigh PN, Blair IP, Nicholson G, de Belleroche J, Gallo JM,Miller CC, Shaw CE. Mutations in FUS, an RNA processingprotein, cause familial amyotrophic lateral sclerosis type 6.Science. 2009 Feb 27;323(5918):1208-11.
  • Kabashi E, Valdmanis PN, Dion P, Spiegelman D, McConkeyBJ, Vande Velde C, Bouchard JP, Lacomblez L, PochigaevaK, Salachas F, Pradat PF, Camu W, Meininger V, Dupre N,Rouleau GA. TARDBP mutations in individuals with sporadicand familial amyotrophic lateral sclerosis. Nat Genet. 2008May;40(5):572-4.[PubMed][Crossref]
  • Vance C, Al-Chalabi A, Ruddy D, Smith BN, Hu X, SreedharanJ, Siddique T, Schelhaas HJ, Kusters B, Troost D, Baas F, deJong V, Shaw CE. Familial amyotrophic lateral sclerosis withfrontotemporal dementia is linked to a locus on chromosome9p13.2-21.3. Brain. 2006 Apr;129(Pt 4):868-76.
  • Lill CM, Abel O, Bertram L, Al-Chalabi A. Keeping up withgenetic discoveries in amyotrophic lateral sclerosis: theALSoD and ALSGene databases. Amyotroph Lateral Scler.2011 Jul;12(4):238-49.[PubMed]
  • Renton AE, Majounie E, Waite A, Simón-Sánchez J,Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, vanSwieten JC, Myllykangas L, Kalimo H, Paetau A, AbramzonY, Remes AM, Kaganovich A, Scholz SW, Duckworth J,Ding J, Harmer DW, Hernandez DG, Johnson JO, MokK, Ryten M, Trabzuni D, Guerreiro RJ, Orrell RW, Neal J,Murray A, Pearson J, Jansen IE, Sondervan D, SeelaarH, Blake D, Young K, Halliwell N, Callister JB, Toulson G,Richardson A, Gerhard A, Snowden J, Mann D, Neary D,Nalls MA, Peuralinna T, Jansson L, Isoviita VM, KaivorinneAL, Hölttä-Vuori M, Ikonen E, Sulkava R, Benatar M, WuuJ, Chiò A, Restagno G, Borghero G, Sabatelli M; ITALSGENConsortium, Heckerman D, Rogaeva E, Zinman L,Rothstein JD, Sendtner M, Drepper C, Eichler EE, Alkan C,Abdullaev Z, Pack SD, Dutra A, Pak E, Hardy J, SingletonA, Williams NM, Heutink P, Pickering-Brown S, Morris HR,Tienari PJ, Traynor BJ. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALSFTD.Neuron. 2011 Oct 20;72(2):257-68.[Crossref]
  • DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL,Baker M, Rutherford NJ, Nicholson AM, Finch NA, Flynn H,Adamson J, Kouri N, Wojtas A, Sengdy P, Hsiung GY, KarydasA, Seeley WW, Josephs KA, Coppola G, Geschwind DH,Wszolek ZK, Feldman H, Knopman DS, Petersen RC, MillerBL, Dickson DW, Boylan KB, Graff-Radford NR, RademakersR. Expanded GGGGCC hexanucleotide repeat in noncodingregion of C9ORF72 causes chromosome 9p-linked FTD andALS. Neuron. 2011 Oct 20;72(2):245-56.[Crossref]
  • Smith BN, Newhouse S, Shatunov A, Vance C, Topp S,Johnson L, Miller J, Lee Y, Troakes C, Scott KM, Jones A, GrayI, Wright J, Hortobágyi T, Al-Sarraj S, Rogelj B, Powell J, LuptonM, Lovestone S, Sapp PC, Weber M, Nestor PJ, Schelhaas HJ,Asbroek AA, Silani V, Gellera C, Taroni F, Ticozzi N, Van denBerg L, Veldink J, Van Damme P, Robberecht W, Shaw PJ,Kirby J, Pall H, Morrison KE, Morris A, de Belleroche J, Vianneyde Jong JM, Baas F, Andersen PM, Landers J, Brown RH Jr,Weale ME, Al-Chalabi A, Shaw CE. The C9ORF72 expansionmutation is a common cause of ALS+/-FTD in Europe and hasa single founder. Eur J Hum Genet. 2012 Jun 13. doi: 10.1038/ejhg.2012.98. [Epub ahead of print].[Crossref]
  • Han-Xiang Deng, Wenjie Chen, Seong-Tshool Hong, KymM. Boycott, George H. Gorrie, Nailah Siddique, Yi Yang,Faisal Fecto, Yong Shi, Hong Zhai, Hujun Jiang, MakitoHirano, Evadnie Rampersaud, Gerard H. Jansen, SandraDonkervoort, Eileen H. Bigio, Benjamin R. Brooks, KaoutherAjroud, Robert L. Sufit, Jonathan L. Haines, Enrico Mugnaini,Margaret Pericak-Vance, Teepu Siddique. Mutations inUBQLN2 cause dominant X-linked juvenile and adult onsetALS and ALS/dementia Nature. 2011 August 21; 477(7363):211–215.
  • Wu CH, Fallini C, Ticozzi N, Keagle PJ, Sapp PC, PiotrowskaK, Lowe P, Koppers M, McKenna-Yasek D, Baron DM, KostJE, Gonzalez-Perez P, Fox AD, Adams J, Taroni F, Tiloca C,Leclerc AL, Chafe SC, Mangroo D, Moore MJ, Zitzewitz JA,Xu ZS, van den Berg LH, Glass JD, Siciliano G, Cirulli ET,Goldstein DB, Salachas F, Meininger V, Rossoll W, Ratti A,Gellera C, Bosco DA, Bassell GJ, Silani V, Drory VE, BrownRH, Landers JE. Mutations in the profilin 1 gene causefamilial amyotrophic lateral sclerosis. Nature. 2012 Jul 15.doi: 10.1038/nature11280. [Epub ahead of print].[Crossref]
  • Schymick JC, Talbot K, Traynor BJ. Genetics of sporadicamyotrophic lateral sclerosis. Hum Mol Genet. 2007 Oct15;16 Spec No. 2:R233-42.[Crossref]
  • Coppedè F, Lo Gerfo A, Carlesi C, Piazza S, MancusoM, Pasquali L, Murri L, Migliore L, Siciliano G. Lack ofassociation between the APEX1 Asp148Glu polymorphismand sporadic amyotrophic lateral sclerosis. Neurobiol Aging.2010 Feb;31(2):353-5.
  • Golenia A, Tomik B, Zawislak D, Wolkow P, Dziubek A, SadoM, Szczudlik A, Figlewicz DA, Slowik A. Lack of associationbetween VEGF gene polymorphisms and plasma VEGF levelsand sporadic AL. Neurology. 2010 Nov 30;75(22):2035-7.
  • Wills AM, Cronin S, Slowik A, Kasperaviciute D, Van Es MA,Morahan JM, Valdmanis PN, Meininger V, Melki J, Shaw CE,Rouleau GA, Fisher EM, Shaw PJ, Morrison KE, PamphlettR, Van den Berg LH, Figlewicz DA, Andersen PM, Al-Chalabi A, Hardiman O, Purcell S, Landers JE, Brown RHJr. A large-scale international meta-analysis of paraoxonasegene polymorphisms in sporadic ALS. Neurology. 2009 Jul7;73(1):16-24.[Crossref]
  • Kisby GE, Ellison M, Spencer PS. Content of the neurotoxinscycasin (methylazoxymethanol beta-D-glucoside) and BMAA(beta-N-methylamino-L-alanine) in cycad flour prepared byGuam Chamorros. Neurology. 1992 Jul;42(7):1336-40.[Crossref][PubMed]
  • Sutedja NA, Veldink JH, Fischer K, Kromhout H, HeederikD, Huisman MH, Wokke JH, van den Berg LH. Exposureto chemicals and metals and risk of amyotrophic lateralsclerosis: a systematic review. Amyotroph Lateral Scler. 2009Oct-Dec;10(5-6):302-9.
  • Sutedja NA, Fischer K, Veldink JH, van der Heijden GJ,Kromhout H, Heederik D, Huisman MH, Wokke JJ, van denBerg LH. What we truly know about occupation as a riskfactor for ALS: a critical and systematic review. AmyotrophLateral Scler. 2009 Oct-Dec;10(5-6):295-301.
  • Sturrock A, Leavitt BR. The Clinical and Genetic Featuresof Huntington Disease. Journal of Geriatric Psychiatry andNeurology 23(4) 243-259.[PubMed]
  • Reiner A, Dragatsis I, Dietrich P. Genetics andneuropathology of Huntington’s disease.Int Rev Neurobiol.2011;98:325-72.[Crossref]
  • Gayán J, Brocklebank D, Andresen JM, Alkorta-Aranburu G;US-Venezuela Collaborative Research Group, Zameel CaderM, Roberts SA, Cherny SS, Wexler NS, Cardon LR, HousmanDE. Genomewide linkage scan reveals novel loci modifyingage of onset of Huntington’s disease in the Venezuelan HDkindreds. Genet Epidemiol. 2008 Jul;32(5):445-53.[Crossref]
  • van Dellen A, Grote HE, Hannan AJ. Gene-environmentinteractions, neuronal dysfunction and pathological plasticityin Huntington’s disease. Clin Exp Pharmacol Physiol. 2005Dec;32(12):1007-19.[Crossref]
  • Nithianantharajah J, Barkus C, Murphy M, Hannan AJ. Geneenvironmentinteractions modulating cognitive function andmolecular correlates of synaptic plasticity in Huntington’sdisease transgenic mice. Neurobiol Dis. 2008 Mar;29(3):490-504.[Crossref]
  • Martín-Subero JI. How epigenomics brings phenotype intobeing. Pediatr Endocrinol Rev. 2011 Sep;9 Suppl 1:506-10.
  • Esteller M. Non-coding RNAs in human disease. Nat RevGenet. 2011 Nov 18;12(12):861-74.[Crossref]
  • Jones PA. Functions of DNA methylation: islands, startsites, gene bodies and beyond. Nat Rev Genet. 2012 May29;13(7):484-92[Crossref]
  • Jjingo D, Conley AB, Yi SV, Lunyak VV, Jordan I K. On thepresence and role of human gene-body DNA methylation.Oncotarget 2012; 3(4):462-474[PubMed]
  • Salbaum JM, Kappen C. Genetic and epigenomic footprintsof folate. Prog Mol Biol Transl Sci. 2012;108:129-58.[Crossref][PubMed]
  • Jones PA, Liang G. Rethinking how DNA methylation patternsare maintained. Nat Rev Genet. 2009 Nov;10(11):805-11.Epub 2009 Sep 30.[Crossref]
  • Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases.Annu Rev Biochem. 2005;74:481-514.[Crossref][PubMed]
  • Métivier R, Gallais R, Tiffoche C, Le Péron C, JurkowskaRZ, Carmouche RP, Ibberson D, Barath P, Demay F, ReidG, Benes V, Jeltsch A, Gannon F, Salbert G. Cyclical DNAmethylation of a transcriptionally active promoter. Nature.2008 Mar 6;452(7183):45-50.
  • Ballestar E, Wolffe AP. Methyl-CpG-binding proteins.Targeting specific gene repression. Eur J Biochem. 2001Jan;268(1):1-6.[Crossref][PubMed]
  • Fournier A, Sasai N, Nakao M, Defossez PA. The role ofmethyl-binding proteins in chromatin organization andepigenome maintenance. Brief Funct Genomics. 2012May;11(3):251-64.[Crossref][PubMed]
  • Defossez PA, Stancheva I. Biological functions of methyl-CpGbindingproteins. Prog Mol Biol Transl Sci. 2011;101:377-98.[PubMed][Crossref]
  • Bogdanović O, Veenstra GJ. DNA methylation and methyl-CpG binding proteins: developmental requirements andfunction. Chromosoma. 2009 Oct;118(5):549-65. 9.[Crossref][PubMed]
  • Guo JU, Su Y, Zhong C, Ming GL, Song H. Hydroxylationof 5-methylcytosine by TET1 promotes active DNAdemethylation in the adult brain. Cell. 2011 Apr 29;145(3):423-34. Epub 2011 Apr 14.[Crossref]
  • Münzel M, Globisch D, Carell T. 5-Hydroxymethylcytosine,the sixth base of the genome. Angew Chem Int Ed Engl.2011 Jul 11;50(29):6460-8.[Crossref]
  • van den Hove DL, Chouliaras L, Rutten BP. The role of5-hydroxymethylcytosine in aging and Alzheimer’s disease:current status and prospects for future studies. CurrAlzheimer Res. 2012 Jun 1;9(5):545-9.
  • Luger K, Mäder AW, Richmond RK, Sargent DF, RichmondTJ. Crystal structure of the nucleosome core particle at 2.8 Aresolution. Nature 1997; 389 (6648): 251–60.
  • Berger SL. The complex language of chromatin regulationduring transcription. Nature. 2007 May 24;447(7143):407-12.
  • Chouliaras L, Rutten BP, Kenis G, Peerbooms O, VisserPJ, Verhey F, van Os J, Steinbusch HW, van den Hove DL.Epigenetic regulation in the pathophysiology of Alzheimer’sdisease. Prog Neurobiol. 2010 Apr;90(4):498-510.[Crossref]
  • Martin C, Zhang Y. The diverse functions of histone lysinemethylation. Nat Rev Mol Cell Biol. 2005 Nov;6(11):838-49.[Crossref][PubMed]
  • Yost JM, Korboukh I, Liu F, Gao C, Jin J. Targets inepigenetics: inhibiting the methyl writers of the histone code.Curr Chem Genomics. 2011;5(Suppl 1):72-84.[PubMed][Crossref]
  • Li B, Carey M, Workman JL. The role of chromatin duringtranscription. Cell. 2007 Feb 23;128(4):707-19.[Crossref]
  • Sato F, Tsuchiya S, Meltzer SJ, Shimizu K. MicroRNAs andepigenetics. FEBS J. 2011 May;278(10):1598-609.[PubMed][Crossref]
  • Moazed D. Small RNAs in transcriptional genesilencing and genome defence. Nature. 2009 Jan22;457(7228):413-20.
  • Saxena A, Carninci P. Long non-coding RNA modifieschromatin: epigenetic silencing by long non-coding RNAs.Bioessays. 2011 Nov;33(11):830-9.[Crossref][PubMed]
  • Rodríguez-Rodero S, Fernández-Morera JL, Fernandez AF,Menéndez-Torre E, Fraga MF. Epigenetic regulation of aging.Discov Med. 2010 Sep;10(52):225-33.
  • Guo JU, Ma DK, Mo H, Ball MP, Jang MH, Bonaguidi MA,Balazer JA, Eaves HL, Xie B, Ford E, Zhang K, Ming GL, GaoY, Song H. Neuronal activity modifies the DNA methylationlandscape in the adult brain. Nat Neurosci. 2011 Aug28;14(10):1345-51.[Crossref]
  • Sultan FA, Day JJ. Epigenetic mechanisms in memory andsynaptic function. Epigenomics. 2011 Apr;3(2):157-81.[PubMed][Crossref]
  • Cedar H, Bergman Y. Programming of DNA methylationpatterns. Annu Rev Biochem. 2012 Jul 7;81:97-117.[Crossref]
  • Reik W, Dean W, Walter J. Epigenetic reprogrammingin mammalian development. Science. 2001 Aug10;293(5532):1089-93.
  • Miller CA, Gavin CF, White JA, Parrish RR, Honasoge A,Yancey CR, Rivera IM, Rubio MD, Rumbaugh G, Sweatt JD.Cortical DNA methylation maintains remote memory. NatNeurosci. 2010 Jun;13(6):664-6.[PubMed][Crossref]
  • Miller CA, Sweatt JD. Covalent modification of DNA regulatesmemoryformation. Neuron. 2007 Mar 15;53(6):857-69.[Crossref]
  • Miller CA, Campbell SL, Sweatt JD. DNA methylation andhistone acetylation work in concert to regulate memoryformation and synaptic plasticity. Neurobiol Learn Mem.2008 May;89(4):599-603.[Crossref][PubMed]
  • Coppedè F. One-carbon metabolism and Alzheimer’sdisease: focus on epigenetics. Curr Genomics. 2010Jun;11(4):246-60.[Crossref]
  • Scarpa S, Fuso A, D’Anselmi F, Cavallaro RA. Presenilin 1gene silencing by S-adenosylmethionine: a treatment forAlzheimer disease? FEBS Lett. 2003 Apr 24;541(1-3):145-8.
  • Fuso A, Seminara L, Cavallaro RA, D’Anselmi F, ScarpaS. S-adenosylmethionine/homocysteine cycle alterationsmodify DNA methylation status with consequent deregulationof PS1 and BACE and beta-amyloid production. Mol CellNeurosci. 2005 Jan;28(1):195-204.[Crossref]
  • Fuso A, Nicolia V, Cavallaro RA, Ricceri L, D’Anselmi F, ColucciaP, Calamandrei G, Scarpa S. B-vitamin deprivation induceshyperhomocysteinemia and brain S-adenosylhomocysteine,depletes brain S-adenosylmethionine, and enhances PS1and BACE expression and amyloid-beta deposition in mice.Mol Cell Neurosci. 2008 Apr;37(4):731-46.[Crossref]
  • Fuso A, Nicolia V, Cavallaro RA, Scarpa S. DNA methylaseand demethylase activities are modulated by one-carbonmetabolism in Alzheimer’s disease models. J Nutr Biochem.2011 Mar;22(3):242-51.[PubMed][Crossref]
  • Fuso A, Nicolia V, Ricceri L, Cavallaro RA, Isopi E, Mangia F,Fiorenza MT, Scarpa S. S-adenosylmethionine reduces theprogress of the Alzheimer-like features induced by B-vitamindeficiency in mice. Neurobiol Aging. 2012 Jul;33(7):1482.e1-1482.e16.[PubMed]
  • Chan A, Shea TB. Folate deprivation increases presenilinexpression, gamma-secretase activity, and Abeta levels inmurine brain: potentiation by ApoE deficiency and alleviationby dietary S-adenosyl methionine. J Neurochem. 2007Aug;102(3):753-60.[PubMed][Crossref]
  • Lin HC, Hsieh HM, Chen YH, Hu ML. S-Adenosylhomocysteineincreases beta-amyloid formation in BV-2 microglial cells byincreased expressions of beta-amyloid precursor proteinand presenilin 1 and by hypomethylation of these genepromoters. Neurotoxicology. 2009 Jul;30(4):622-7.[Crossref][PubMed]
  • Lin HC, Song TY, Hu ML. S-Adenosylhomocysteine enhancesDNA damage through increased β-amyloid formation andinhibition of the DNA-repair enzyme OGG1b in microglialBV-2 cells. Toxicology. 2011 Dec 18;290(2-3):342-9. Epub2011 Oct 26.
  • Basha MR, Wei W, Bakheet SA, Benitez N, Siddiqi HK, GeYW, Lahiri DK, Zawia NH. The fetal basis of amyloidogenesis:exposure to lead and latent overexpression of amyloidprecursor protein and beta-amyloid in the aging brain. JNeurosci. 2005 Jan 26;25(4):823-9.[Crossref]
  • Wu J, Basha MR, Brock B, Cox DP, Cardozo-Pelaez F,McPherson CA, Harry J, Rice DC, Maloney B, Chen D, LahiriDK, Zawia NH. Alzheimer’s disease (AD)-like pathology inaged monkeys after infantile exposure to environmentalmetal lead (Pb): evidence for a developmental origin andenvironmental link for AD. J Neurosci. 2008 Jan 2;28(1):3-9.[Crossref]
  • Bihaqi SW, Huang H, Wu J, Zawia NH. Infant exposure tolead (Pb) and epigenetic modifications in the aging primatebrain: implications for Alzheimer’s disease. J Alzheimers Dis.2011;27(4):819-33.
  • Bihaqi SW, Zawia NH. Alzheimer’s disease biomarkers andepigenetic intermediates following exposure to pb in vitro.Curr Alzheimer Res. 2012 Jun 1;9(5):555-62.
  • Li YY, Chen T, Wan Y, Xu SQ. Lead exposure inpheochromocytoma cells induces persistent changes inamyloid precursor protein gene methylation patterns. EnvironToxicol. 2012 Aug;27(8):495-502.[Crossref][PubMed]
  • Guo X, Wu X, Ren L, Liu G, Li L. Epigenetic mechanisms ofamyloid-β production in anisomycin-treated SH-SY5Y cells.Neuroscience. 2011 Oct 27;194:272-81.
  • Byun CJ, Seo J, Jo SA, Park YJ, Klug M, Rehli M, ParkMH, Jo I. DNA methylation of the 5’-untranslated region at+298 and +351 represses BACE1 expression in mouse BV-2microglial cells. Biochem Biophys Res Commun. 2012 Jan6;417(1):387-92.
  • Martisova E, Solas M, Gereñu G, Milagro FI, Campion J,Ramírez MJ. Mechanisms involved in BACE upregulationassociated to stress. Curr Alzheimer Res. 2012 May 22.[Epub ahead of print][Crossref]
  • Chen KL, Wang SS, Yang YY, Yuan RY, Chen RM, Hu CJ.The epigenetic effects of amyloid-beta(1-40) on global DNAand neprilysin genes in murine cerebral endothelial cells.Biochem Biophys Res Commun. 2009 Jan 2;378(1):57-61.
  • Shin J, Yu SB, Yu UY, Jo SA, Ahn JH. Swedish mutationwithin amyloid precursor protein modulates global gene expression towards the pathogenesis of Alzheimer’s disease.BMB Rep. 2010 Oct;43(10):704-9.[PubMed][Crossref]
  • Mastroeni D, McKee A, Grover A, Rogers J, Coleman PD.Epigenetic differences in cortical neurons from a pair ofmonozygotic twins discordant for Alzheimer’s disease. PLoSOne. 2009 Aug 12;4(8):e6617.[Crossref]
  • Mastroeni D, Grover A, Delvaux E, Whiteside C, ColemanPD, Rogers J. Epigenetic changes in Alzheimer’s disease:decrements in DNA methylation. Neurobiol Aging. 2010Dec;31(12):2025-37.[PubMed][Crossref]
  • Bakulski KM, Dolinoy DC, Sartor MA, Paulson HL, KonenJR, Lieberman AP, Albin RL, Hu H, Rozek LS. Genome-wideDNA methylation differences between late-onset Alzheimer’sdisease and cognitively normal controls in human frontalcortex. J Alzheimers Dis. 2012;29(3):571-88.[PubMed]
  • Rao JS, Keleshian VL, Klein S, Rapoport SI. Epigeneticmodifications in frontal cortex from Alzheimer’s diseaseand bipolar disorder patients. Transl Psychiatry. 2012 Jul3;2:e132.[Crossref]
  • Barrachina M, Ferrer I. DNA methylation of Alzheimerdisease and tauopathy-related genes in postmortem brain. JNeuropathol Exp Neurol. 2009 Aug;68(8):880-91.[Crossref][PubMed]
  • Brohede J, Rinde M, Winblad B, Graff C. A DNA methylationstudy of the amyloid precursor protein gene in several brainregions from patients with familial Alzheimer disease. JNeurogenet. 2010 Dec;24(4):179-81.[Crossref][PubMed]
  • Siegmund KD, Connor CM, Campan M, Long TI,Weisenberger DJ, Biniszkiewicz D, Jaenisch R, Laird PW,Akbarian S. DNA methylation in the human cerebral cortex isdynamically regulated throughout the life span and involvesdifferentiated neurons. PLoS One. 2007 Sep 19;2(9):e895.[Crossref]
  • Wang SC, Oelze B, Schumacher A. Age-specific epigeneticdrift in late-onset Alzheimer’s disease. PLoS One. 2008 Jul16;3(7):e2698.[Crossref]
  • Pietrzak M, Rempala G, Nelson PT, Zheng JJ, Hetman M.Epigenetic silencing of nucleolar rRNA genes in Alzheimer’sdisease. PLoS One. 2011;6(7):e22585.[Crossref]
  • Furuya TK, da Silva PN, Payão SL, Bertolucci PH, RasmussenLT, de Labio RW, Braga IL, Chen ES, Turecki G, MechawarN, Mill J, Smith MD. Analysis of SNAP25 mRNA expressionand promoter DNA methylation in brain areas of Alzheimer’sDisease patients. Neuroscience. 2012 Jun 23. [Epub aheadof print][Crossref]
  • Bollati V, Galimberti D, Pergoli L, Dalla Valle E, BarrettaF, Cortini F, Scarpini E, Bertazzi PA, Baccarelli A. DNAmethylation in repetitive elements and Alzheimer disease.Brain Behav Immun. 2011 Aug;25(6):1078-83. Epub 2011Feb 3.[Crossref]
  • D’Addario C, Di Francesco A, Arosio B, Gussago C,Dell’osso B, Bari M, Galimberti D, Scarpini E, AltamuraAC, Mari D, Maccarrone M. Epigenetic regulation of FattyAcid amide hydrolase in Alzheimer disease. PLoS One.2012;7(6):e39186.[Crossref]
  • Coppedè F, Zitarosa MT, Migheli F, Lo Gerfo A, Bagnoli S,Dardano A, Nacmias B, Mancuso M, Monzani F, Siciliano G, Sorbi S, Migliore L. DNMT3B Promoter Polymorphisms andRisk of Late Onset Alzheimer’s Disease. Curr Alzheimer Res.2012 Jun 1;9(5):550-4.
  • Ogawa O, Zhu X, Lee HG, Raina A, Obrenovich ME, BowserR, Ghanbari HA, Castellani RJ, Perry G, Smith MA. Ectopiclocalization of phosphorylated histone H3 in Alzheimer’sdisease: a mitotic catastrophe? Acta Neuropathol. 2003May;105(5):524-8.
  • Myung NH, Zhu X, Kruman II, Castellani RJ, Petersen RB,Siedlak SL, Perry G, Smith MA, Lee HG. Evidence of DNAdamage in Alzheimer disease: phosphorylation of histoneH2AX in astrocytes. Age (Dordr). 2008 Dec;30(4):209-15.[Crossref]
  • Xu K, Dai XL, Huang HC, Jiang ZF. Targeting HDACs: apromising therapy for Alzheimer’s disease. Oxid Med CellLongev. 2011;2011:143269.[PubMed]
  • Ding H, Dolan PJ, Johnson GV. Histone deacetylase 6interacts with the microtubule-associated protein tau. JNeurochem. 2008 Sep;106(5):2119-30.[PubMed]
  • Gräff J, Rei D, Guan JS, Wang WY, Seo J, Hennig KM, NielandTJ, Fass DM, Kao PF, Kahn M, Su SC, Samiei A, Joseph N,Haggarty SJ, Delalle I, Tsai LH. An epigenetic blockade ofcognitive functions in the neurodegenerating brain. Nature.2012 Feb 29;483(7388):222-6.
  • Francis YI, Fà M, Ashraf H, Zhang H, Staniszewski A,Latchman DS, Arancio O. Dysregulation of histone acetylationin the APP/PS1 mouse model of Alzheimer’s disease. JAlzheimers Dis. 2009;18(1):131-9.
  • Kilgore M, Miller CA, Fass DM, Hennig KM, Haggarty SJ,Sweatt JD, Rumbaugh G. Inhibitors of class 1 histonedeacetylases reverse contextual memory deficits in a mousemodel of Alzheimer’s disease. Neuropsychopharmacology.2010 Mar;35(4):870-80.[Crossref]
  • Govindarajan N, Agis-Balboa RC, Walter J, Sananbenesi F,Fischer A. Sodium butyrate improves memory function in anAlzheimer’s disease mouse model when administered at anadvanced stage of disease progression. J Alzheimers Dis.2011;26(1):187-97.
  • Marques SC, Lemos R, Ferreiro E, Martins M, de MendonçaA, Santana I, Outeiro TF, Pereira CM. Epigenetic regulationof BACE1 in Alzheimer’s disease patients and in transgenicmice. Neuroscience. 2012 Jun 21. [Epub ahead of print].[Crossref]
  • Lukiw WJ. Micro-RNA speciation in fetal, adult andAlzheimer’s disease hippocampus. Neuroreport. 2007 Feb12;18(3):297-300.[Crossref]
  • Delay C, Mandemakers W, Hébert SS. MicroRNAs inAlzheimer’s disease. Neurobiol Dis. 2012 May;46(2):285-90.[Crossref][PubMed]
  • Lukiw WJ, Alexandrov PN. Regulation of Complement FactorH (CFH) by Multiple miRNAs in Alzheimer’s Disease (AD)Brain. Mol Neurobiol. 2012 Feb 3. [Epub ahead of print].[Crossref]
  • Lehmann SM, Krüger C, Park B, Derkow K, RosenbergerK, Baumgart J, Trimbuch T, Eom G, Hinz M, Kaul D,Habbel P, Kälin R, Franzoni E, Rybak A, Nguyen D, Veh R,Ninnemann O, Peters O, Nitsch R, Heppner FL, GolenbockD, Schott E, Ploegh HL, Wulczyn FG, Lehnardt S. Anunconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat Neurosci.2012 Jun;15(6):827-35.[Crossref]
  • Liang C, Zhu H, Xu Y, Huang L, Ma C, Deng W, Liu Y, QinC. MicroRNA-153 negatively regulates the expression ofamyloid precursor protein and amyloid precursor-like protein2. Brain Res.2012 May 21;1455:103-13.
  • Long JM, Ray B, Lahiri DK. MicroRNA-153 physiologicallyinhibits expression of amyloid-β precursor protein in culturedhuman fetal brain cells and is dysregulated in a subsetof Alzheimer disease patients J Biol Chem.2012 Sep7;287(37):31298-310.
  • Lee ST, Chu K, Jung KH, Kim JH, Huh JY, Yoon H, ParkDK, Lim JY, Kim JM, Jeon D, Ryu H, Lee SK, Kim M, RohJK. miR-206 regulates brain-derived neurotrophic factor inAlzheimer disease model. Ann Neurol.2012 Aug;72(2):269-77.
  • Faghihi MA, Modarresi F, Khalil AM, Wood DE, SahaganBG, Morgan TE, Finch CE, St Laurent G 3rd, Kenny PJ,Wahlestedt C. Expression of a noncoding RNA is elevated inAlzheimer’s disease and drives rapid feed-forward regulationof beta-secretase. Nat Med. 2008 Jul;14(7):723-30.[Crossref]
  • Bönsch D, Lenz B, Kornhuber J, Bleich S. DNAhypermethylation of the alpha synuclein promoter in patientswith alcoholism. Neuroreport. 2005 Feb 8;16(2):167-70.[Crossref]
  • Frieling H, Gozner A, Römer KD, Lenz B, Bönsch D, WilhelmJ, Hillemacher T, de Zwaan M, Kornhuber J, Bleich S. GlobalDNA hypomethylation and DNA hypermethylation of thealpha synuclein promoter in females with anorexia nervosa.Mol Psychiatry. 2007 Mar;12(3):229-30.[PubMed][Crossref]
  • Voutsinas GE, Stavrou EF, Karousos G, Dasoula A,Papachatzopoulou A, Syrrou M, Verkerk AJ, van der SpekP, Patrinos GP, Stöger R, Athanassiadou A. Allelic imbalanceof expression and epigenetic regulation within the alphasynucleinwild-type and p.Ala53Thr alleles in Parkinsondisease. Hum Mutat. 2010 Jun;31(6):685-91.[Crossref]
  • Jowaed A, Schmitt I, Kaut O, Wüllner U. Methylationregulates alpha-synuclein expression and is decreased inParkinson’s disease patients’ brains. J Neurosci. 2010 May5;30(18):6355-9.[Crossref]
  • Matsumoto L, Takuma H, Tamaoka A, Kurisaki H, DateH, Tsuji S, Iwata A. CpG demethylation enhances alphasynucleinexpression and affects the pathogenesis ofParkinson’s disease. PLoS One. 2010 Nov 24;5(11):e15522.[Crossref]
  • de Boni L, Tierling S, Roeber S, Walter J, Giese A, KretzschmarHA. Next-generation sequencing reveals regional differencesof the α-synuclein methylation state independent of Lewybody disease. Neuromolecular Med. 2011 Dec;13(4):310-20.[Crossref][PubMed]
  • Richter J, Appenzeller S, Ammerpohl O, Deuschl G, PaschenS, Brüggemann N, Klein C, Kuhlenbäumer G. No evidencefor differential methylation of α-synuclein in leukocyteDNA of Parkinson’s disease patients. Mov Disord. 2012Apr;27(4):590-1.[PubMed][Crossref]
  • Desplats P, Spencer B, Coffee E, Patel P, Michael S, PatrickC, Adame A, Rockenstein E, Masliah E. Alpha-synuclein sequesters Dnmt1 from the nucleus: a novel mechanism forepigenetic alterations in Lewy body diseases. J Biol Chem.2011 Mar 18;286(11):9031-7.
  • Cai M, Tian J, Zhao GH, Luo W, Zhang BR. Study ofmethylation levels of parkin gene promoter in Parkinson’sdisease patients. Int J Neurosci. 2011 Sep;121(9):497-502.[Crossref]
  • Barrachina M, Ferrer I. DNA methylation of Alzheimerdisease and tauopathy-related genes in postmortem brain. JNeuropathol Exp Neurol. 2009 Aug;68(8):880-91.[Crossref][PubMed]
  • International Parkinson’s Disease Genomics Consortium(IPDGC); Wellcome Trust Case Control Consortium 2(WTCCC2). A two-stage meta-analysis identifies severalnew loci for Parkinson’s disease. PLoS Genet. 2011Jun;7(6):e1002142.
  • Kaut O, Schmitt I, Wüllner U. Genome-scale methylationanalysis of Parkinson’s disease patients’ brains revealsDNA hypomethylation and increased mRNA expression ofcytochrome P450 2E1. Neurogenetics. 2012 Feb;13(1):87-91.
  • Lin Q, Ding H, Zheng Z, Gu Z, Ma J, Chen L, Chan P, CaiY. Promoter methylation analysis of seven clock genes inParkinson’s disease. Neurosci Lett. 2012 Jan 24;507(2):147-50.[Crossref]
  • Maeda T, Guan JZ, Oyama J, Higuchi Y, Makino N. Agingassociatedalteration of subtelomeric methylation inParkinson’s disease. J Gerontol A Biol Sci Med Sci. 2009Sep;64(9):949-55.[Crossref]
  • Goers J, Manning-Bog AB, McCormack AL, Millett IS,Doniach S, Di Monte DA, Uversky VN, Fink AL. Nuclearlocalization of alpha-synuclein and its interaction withhistones. Biochemistry. 2003 Jul 22;42(28):8465-71.[Crossref]
  • Kontopoulos E, Parvin JD, Feany MB. Alpha-synuclein actsin the nucleus to inhibit histone acetylation and promoteneurotoxicity. Hum Mol Genet. 2006 Oct 15;15(20):3012-23.[PubMed][Crossref]
  • Outeiro TF, Kontopoulos E, Altmann SM, Kufareva I,Strathearn KE, Amore AM, Volk CB, Maxwell MM, RochetJC, McLean PJ, Young AB, Abagyan R, Feany MB, HymanBT, Kazantsev AG. Sirtuin 2 inhibitors rescue alpha-synucleinmediatedtoxicity in models of Parkinson’s disease. Science.2007 Jul 27;317(5837):516-9. Epub 2007 Jun 21.
  • Monti B, Gatta V, Piretti F, Raffaelli SS, Virgili M, ContestabileA. Valproic acid is neuroprotective in the rotenone rat modelof Parkinson’s disease: involvement of alpha-synuclein.Neurotox Res. 2010 Feb;17(2):130-41.[Crossref][PubMed]
  • Kidd SK, Schneider JS. Protection of dopaminergic cells fromMPP+-mediated toxicity by histone deacetylase inhibition.Brain Res. 2010 Oct 1;1354:172-8.
  • Song C, Kanthasamy A, Jin H, Anantharam V, KanthasamyAG. Paraquat induces epigenetic changes by promotinghistone acetylation in cell culture models of dopaminergicdegeneration. Neurotoxicology. 2011 Oct;32(5):586-95.[PubMed][Crossref]
  • Song C, Kanthasamy A, Anantharam V, Sun F, KanthasamyAG. Environmental neurotoxic pesticide increases histoneacetylation to promote apoptosis in dopaminergicneuronal cells: relevance to epigenetic mechanisms ofneurodegeneration. Mol Pharmacol. 2010 Apr;77(4):621-32.[PubMed][Crossref]
  • Kidd SK, Schneider JS. Protective effects of valproic acid onthe nigrostriatal dopamine system in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’sdisease. Neuroscience. 2011 Oct 27;194:189-94.
  • Chen SH, Wu HM, Ossola B, Schendzielorz N, Wilson BC,Chu CH, Chen SL, Wang Q, Zhang D, Qian L, Li X, HongJS, Lu RB. Suberoylanilide hydroxamic acid, a histonedeacetylase inhibitor, protects dopaminergic neuronsfrom neurotoxin-induced damage. Br J Pharmacol. 2012Jan;165(2):494-505.[PubMed][Crossref]
  • Vartiainen S, Pehkonen P, Lakso M, Nass R, Wong G.Identification of gene expression changes in transgenic C.elegans overexpressing human alpha-synuclein. NeurobiolDis. 2006 Jun;22(3):477-86.[PubMed][Crossref]
  • Jin H, Kanthasamy A, Ghosh A, Yang Y, Anantharam V,Kanthasamy AG. α-Synuclein negatively regulates proteinkinase Cδ expression to suppress apoptosis in dopaminergicneurons by reducing p300 histone acetyltransferase activity.J Neurosci. 2011 Feb 9;31(6):2035-51.[Crossref]
  • Du G, Liu X, Chen X, Song M, Yan Y, Jiao R, Wang CC.Drosophila histone deacetylase 6 protects dopaminergicneurons against {alpha}-synuclein toxicity by promotinginclusion formation. Mol Biol Cell. 2010 Jul 1;21(13):2128-37.[Crossref]
  • Su M, Shi JJ, Yang YP, Li J, Zhang YL, Chen J, Hu LF, LiuCF. HDAC6 regulates aggresome-autophagy degradationpathway of α-synuclein in response to MPP+-induced stress.J Neurochem. 2011 Apr;117(1):112-20.
  • Mouradian MM. MicroRNAs in Parkinson’s disease. NeurobiolDis. 2012 May;46(2):279-84.[PubMed][Crossref]
  • Doxakis E. Post-transcriptional regulation of alpha-synucleinexpression by mir-7 and mir-153. J Biol Chem. 2010 Apr23;285(17):12726-34.
  • Gillardon F, Mack M, Rist W, Schnack C, Lenter M, HildebrandtT, Hengerer B. MicroRNA and proteome expression profilingin early-symptomatic α-synuclein(A30P)-transgenic mice.Proteomics Clin Appl. 2008 May;2(5):697-705.[Crossref]
  • Miñones-Moyano E, Porta S, Escaramís G, Rabionet R,Iraola S, Kagerbauer B, Espinosa-Parrilla Y, Ferrer I, EstivillX, Martí E. MicroRNA profiling of Parkinson’s diseasebrains identifies early downregulation of miR-34b/c whichmodulate mitochondrial function. Hum Mol Genet. 2011 Aug1;20(15):3067-78.
  • Liu N, Landreh M, Cao K, Abe M, Hendriks GJ, KennerdellJR, Zhu Y, Wang LS, Bonini NM. The microRNA miR-34modulates ageing and neurodegeneration in Drosophila.Nature. 2012 Feb 15;482(7386):519-23.
  • Margis R, Margis R, Rieder CR. Identification of bloodmicroRNAs associated to Parkinson’s disease. J Biotechnol.2011 Mar 20;152(3):96-101.
  • Gehrke S, Imai Y, Sokol N, Lu B. Pathogenic LRRK2negatively regulates microRNA-mediated translationalrepression. Nature. 2010 Jul 29;466(7306):637-41.
  • Oates N, Pamphlett R. An epigenetic analysis of SOD1 andVEGF in ALS. Amyotroph Lateral Scler. 2007 Apr;8(2):83-6.
  • Morahan JM, Yu B, Trent RJ, Pamphlett R. Are metallothioneingenes silenced in ALS? Toxicol Lett. 2007 Jan 10;168(1):83-7.[Crossref]
  • Yang Y, Gozen O, Vidensky S, Robinson MB, Rothstein JD.Epigenetic regulation of neuron-dependent induction ofastroglial synaptic protein GLT1. Glia. 2010 Feb;58(3):277-86.
  • Morahan JM, Yu B, Trent RJ, Pamphlett R. A genome-wideanalysis of brain DNA methylation identifies new candidategenes for sporadic amyotrophic lateral sclerosis. AmyotrophLateral Scler. 2009 Oct-Dec;10(5-6):418-29.[PubMed]
  • Chestnut BA, Chang Q, Price A, Lesuisse C, Wong M, MartinLJ. Epigenetic regulation of motor neuron cell death throughDNA methylation. J Neurosci. 2011 Nov 16;31(46):16619-36.[Crossref]
  • Matilla-Dueñas A, Corral-Juan M, Volpini V, Sanchez I. Thespinocerebellar ataxias: clinical aspects and moleculargenetics. Adv Exp Med Biol. 2012;724:351-74.
  • Laffita-Mesa JM, Bauer PO, Kourí V, Peña Serrano L,Roskams J, Almaguer Gotay D, Montes Brown JC, MartínezRodríguez PA, González-Zaldívar Y, Almaguer Mederos L,Cuello-Almarales D, Aguiar Santiago J. Epigenetics DNAmethylation in the core ataxin-2 gene promoter: novelphysiological and pathological implications. Hum Genet.2012 Apr;131(4):625-38.[Crossref]
  • Ryu H, Smith K, Camelo SI, Carreras I, Lee J, Iglesias AH,Dangond F, Cormier KA, Cudkowicz ME, Brown RH Jr,Ferrante RJ. Sodium phenylbutyrate prolongs survival andregulates expression of anti-apoptotic genes in transgenicamyotrophic lateral sclerosis mice. J Neurochem. 2005Jun;93(5):1087-98.[Crossref][PubMed]
  • Petri S, Kiaei M, Kipiani K, Chen J, Calingasan NY, CrowJP, Beal MF. Additive neuroprotective effects of a histonedeacetylase inhibitor and a catalytic antioxidant in atransgenic mouse model of amyotrophic lateral sclerosis.Neurobiol Dis. 2006 Apr;22(1):40-9.[Crossref]
  • Del Signore SJ, Amante DJ, Kim J, Stack EC, Goodrich S,Cormier K, Smith K, Cudkowicz ME, Ferrante RJ. Combinedriluzole and sodium phenylbutyrate therapy in transgenicamyotrophic lateral sclerosis mice. Amyotroph Lateral Scler.2009 Apr;10(2):85-94.[PubMed]
  • Feng HL, Leng Y, Ma CH, Zhang J, Ren M, Chuang DM.Combined lithium and valproate treatment delays diseaseonset, reduces neurological deficits and prolongs survival inan amyotrophic lateral sclerosis mouse model. Neuroscience.2008 Aug 26;155(3):567-72.
  • Cudkowicz ME, Andres PL, Macdonald SA, Bedlack RS,Choudry R, Brown RH Jr, Zhang H, Schoenfeld DA, ShefnerJ, Matson S, Matson WR, Ferrante RJ; Northeast ALS andNational VA ALS Research Consortiums. Phase 2 study ofsodium phenylbutyrate in ALS. Amyotroph Lateral Scler.2009 Apr;10(2):99-106.[PubMed]
  • Piepers S, Veldink JH, de Jong SW, van der Tweel I, van derPol WL, Uijtendaal EV, Schelhaas HJ, Scheffer H, de VisserM, de Jong JM, Wokke JH, Groeneveld GJ, van den Berg LH.Randomized sequential trial of valproic acid in amyotrophiclateral sclerosis. Ann Neurol. 2009 Aug;66(2):227-34.[Crossref]
  • Janssen C, Schmalbach S, Boeselt S, Sarlette A, DenglerR, Petri S. Differential histone deacetylase mRNA expressionpatterns in amyotrophic lateral sclerosis. J Neuropathol ExpNeurol. 2010 Jun;69(6):573-81.[Crossref][PubMed]
  • Yoo YE, Ko CP. Treatment with trichostatin A initiated afterdisease onset delays disease progression and increasessurvival in a mouse model of amyotrophic lateral sclerosis.Exp Neurol. 2011 Sep;231(1):147-59.[Crossref]
  • Fiesel FC, Voigt A, Weber SS, Van den Haute C, WaldenmaierA, Görner K, Walter M, Anderson ML, Kern JV, Rasse TM,Schmidt T, Springer W, Kirchner R, Bonin M, Neumann M,Baekelandt V, Alunni-Fabbroni M, Schulz JB, Kahle PJ.Knockdown of transactive response DNA-binding protein(TDP-43) downregulates histone deacetylase 6. EMBO J.2010 Jan 6;29(1):209-21.
  • Kim SH, Shanware NP, Bowler MJ, Tibbetts RS. Amyotrophiclateral sclerosis-associated proteins TDP-43 and FUS/TLSfunction in a common biochemical complex to co-regulateHDAC6 mRNA. J Biol Chem. 2010 Oct 29;285(44):34097-105.
  • Fiesel FC, Schurr C, Weber SS, Kahle PJ. TDP-43 knockdownimpairs neurite outgrowth dependent on its target histonedeacetylase 6. Mol Neurodegener. 2011 Aug 30;6:64.[Crossref]
  • Körner S, Böselt S, Thau N, Rath KJ, Dengler R, Petri S.Differential Sirtuin Expression Patterns in Amyotrophic LateralSclerosis (ALS) Postmortem Tissue: Neuroprotective orNeurotoxic Properties of Sirtuins in ALS? Neurodegener Dis.2012 Jul 10. [Epub ahead of print].
  • Williams AH, Valdez G, Moresi V, Qi X, McAnally J, ElliottJL, Bassel-Duby R, Sanes JR, Olson EN. MicroRNA-206delays ALS progression and promotes regeneration ofneuromuscular synapses in mice. Science. 2009 Dec11;326(5959):1549-54.
  • Kawahara Y, Mieda-Sato A. TDP-43 promotes microRNAbiogenesis as a component of the Drosha and Dicercomplexes. Proc Natl Acad Sci U S A. 2012 Feb28;109(9):3347-52.[Crossref]
  • Buratti E, De Conti L, Stuani C, Romano M, Baralle M, BaralleF. Nuclear factor TDP-43 can affect selected microRNAlevels. FEBS J. 2010 May;277(10):2268-81.
  • Dion V, Wilson JH. Instability and chromatin structureof expanded trinucleotide repeats. Trends Genet. 2009Jul;25(7):288-97. Epub 2009 Jun 18.[PubMed][Crossref]
  • Gorbunova V, Seluanov A, Mittelman D, Wilson JH. Genomewidedemethylation destabilizes CTG.CAG trinucleotiderepeats in mammalian cells. Hum Mol Genet. 2004 Dec1;13(23):2979-89.[Crossref]
  • Dion V, Lin Y, Price BA, Fyffe SL, Seluanov A, GorbunovaV, Wilson JH. Genome-wide demethylation promotestriplet repeat instability independently of homologousrecombination. DNA Repair (Amst). 2008 Feb 1;7(2):313-20.[Crossref]
  • Dion V, Lin Y, Hubert L Jr, Waterland RA, Wilson JH. Dnmt1deficiency promotes CAG repeat expansion in the mousegermline. Hum Mol Genet. 2008 May 1;17(9):1306-17.
  • Gray SG. Targeting histone deacetylases for the treatmentof Huntington’s disease. CNS Neurosci Ther. 2010Dec;16(6):348-61.[Crossref]
  • Steffan JS, Kazantsev A, Spasic-Boskovic O, GreenwaldM, Zhu YZ, Gohler H, Wanker EE, Bates GP, Housman DE,Thompson LM. The Huntington’s disease protein interacts withp53 and CREB-binding protein and represses transcription.Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6763-8.[Crossref]
  • Jiang H, Poirier MA, Liang Y, Pei Z, Weiskittel CE, Smith WW,DeFranco DB, Ross CA. Depletion of CBP is directly linkedwith cellular toxicity caused by mutant huntingtin. NeurobiolDis. 2006 Sep;23(3):543-51.[PubMed][Crossref]
  • Klevytska AM, Tebbenkamp AT, Savonenko AV, BorcheltDR. Partial depletion of CREB-binding protein reduces lifeexpectancy in a mouse model of Huntington disease. JNeuropathol Exp Neurol. 2010 Apr;69(4):396-404.[Crossref]
  • Hughes RE. Polyglutamine disease: acetyltransferases awry.Curr Biol. 2002 Feb 19;12(4):R141-3.[Crossref]
  • Bates EA, Victor M, Jones AK, Shi Y, Hart AC. Differentialcontributions of Caenorhabditis elegans histone deacetylasesto huntingtin polyglutamine toxicity. J Neurosci. 2006 Mar8;26(10):2830-8.[Crossref]
  • Steffan JS, Bodai L, Pallos J, Poelman M, McCampbell A,Apostol BL, Kazantsev A, Schmidt E, Zhu YZ, GreenwaldM, Kurokawa R, Housman DE, Jackson GR, Marsh JL,Thompson LM. Histone deacetylase inhibitors arrestpolyglutamine-dependent neurodegeneration in Drosophila.Nature. 2001 Oct 18;413(6857):739-43.
  • Pallos J, Bodai L, Lukacsovich T, Purcell JM, Steffan JS,Thompson LM, Marsh JL. Inhibition of specific HDACsand sirtuins suppresses pathogenesis in a Drosophilamodel of Huntington’s disease. Hum Mol Genet. 2008 Dec1;17(23):3767-75.[Crossref]
  • Mielcarek M, Benn CL, Franklin SA, Smith DL, WoodmanB, Marks PA, Bates GP. SAHA decreases HDAC 2 and 4levels in vivo and improves molecular phenotypes in theR6/2 mouse model of Huntington’s disease. PLoS One.2011;6(11):e27746.
  • Ryu H, Lee J, Hagerty SW, Soh BY, McAlpin SE, Cormier KA,Smith KM, Ferrante RJ. ESET/SETDB1 gene expression andhistone H3 (K9) trimethylation in Huntington’s disease. ProcNatl Acad Sci U S A. 2006 Dec 12;103(50):19176-81.[Crossref]
  • Lee J, Hagerty S, Cormier KA, Kim J, Kung AL, Ferrante RJ,Ryu H. Monoallele deletion of CBP leads to pericentromericheterochromatin condensation through ESET expressionand histone H3 (K9) methylation. Hum Mol Genet. 2008 Jun15;17(12):1774-82.[Crossref]
  • Sadri-Vakili G, Bouzou B, Benn CL, Kim MO, Chawla P,Overland RP, Glajch KE, Xia E, Qiu Z, Hersch SM, Clark TW,Yohrling GJ, Cha JH. Histones associated with downregulatedgenes are hypo-acetylated in Huntington’s disease models.Hum Mol Genet. 2007 Jun 1;16(11):1293-306.[Crossref]
  • Stack EC, Del Signore SJ, Luthi-Carter R, Soh BY, GoldsteinDR, Matson S, Goodrich S, Markey AL, Cormier K, HagertySW, Smith K, Ryu H, Ferrante RJ. Modulation of nucleosome dynamics in Huntington’s disease. Hum Mol Genet. 2007May 15;16(10):1164-75.[Crossref]
  • Kim MO, Chawla P, Overland RP, Xia E, Sadri-Vakili G, ChaJH. Altered histone monoubiquitylation mediated by mutanthuntingtin induces transcriptional dysregulation. J Neurosci.2008 Apr 9;28(15):3947-57.[Crossref]
  • Bett JS, Benn CL, Ryu KY, Kopito RR, Bates GP.The polyubiquitin Ubc gene modulates histone H2Amonoubiquitylation in the R6/2 mouse model of Huntington’sdisease. J Cell Mol Med. 2009 Aug;13(8B):2645-57.[Crossref]
  • Hu Y, Chopra V, Chopra R, Locascio JJ, Liao Z, Ding H,Zheng B, Matson WR, Ferrante RJ, Rosas HD, HerschSM, Scherzer CR. Transcriptional modulator H2A histonefamily, member Y (H2AFY) marks Huntington disease activityin man and mouse. Proc Natl Acad Sci U S A. 2011 Oct11;108(41):17141-6.[Crossref]
  • Buckley NJ, Johnson R, Zuccato C, Bithell A, Cattaneo E. Therole of REST in transcriptional and epigenetic dysregulation inHuntington’s disease. Neurobiol Dis. 2010 Jul;39(1):28-39.[Crossref]
  • Johnson R, Zuccato C, Belyaev ND, Guest DJ, Cattaneo E,Buckley NJ. A microRNA-based gene dysregulation pathway inHuntington’s disease. Neurobiol Dis. 2008 Mar;29(3):438-45.[Crossref]
  • Packer AN, Xing Y, Harper SQ, Jones L, Davidson BL. Thebifunctional microRNA miR-9/miR-9* regulates REST andCoREST and is downregulated in Huntington’s disease.JNeurosci. 2008 Dec 31;28(53):14341-6.
  • Sinha M, Ghose J, Das E, Bhattarcharyya NP.AlteredmicroRNAs in STHdh(Q111)/Hdh(Q111) cells: miR-146atargets TBP. Biochem Biophys Res Commun. 2010 Jun4;396(3):742-7.
  • Martí E, Pantano L, Bañez-Coronel M, Llorens F, Miñones-Moyano E, Porta S, Sumoy L, Ferrer I, Estivill X.A myriad ofmiRNA variants in control and Huntington’s disease brainregions detected by massively parallel sequencing.NucleicAcids Res. 2010 Nov;38(20):7219-35.[Crossref]
  • Lee ST, Chu K, Im WS, Yoon HJ, Im JY, Park JE, ParkKH, Jung KH, Lee SK, Kim M, Roh JK.Altered microRNAregulation in Huntington’s disease models. Exp Neurol. 2011Jan;227(1):172-9.[Crossref]
  • Sinha M, Mukhopadhyay S, Bhattacharyya NP. Mechanism(s)of Alteration of Micro RNA Expressions in Huntington’sDisease and Their Possible Contributions to the ObservedCellular and Molecular Dysfunctions in the Disease.Neuromolecular Med. 2012 May 13. [Epub ahead of print][Crossref]
  • Gaughwin PM, Ciesla M, Lahiri N, Tabrizi SJ, Brundin P,Björkqvist M. Hsa-miR-34b is a plasma-stable microRNAthat is elevated in pre-manifest Huntington’s disease.HumMol Genet. 2011 Jun 1;20(11):2225-37.[Crossref]
  • Pedersen NL. Reaching the limits of genome-widesignificance in Alzheimer disease: back to the environment.JAMA. 2010 May 12;303(18):1864-5.
  • Lahiri DK, Maloney B. The “LEARn” (latent early-lifeassociated regulation) model: an epigenetic pathway linkingmetabolic and cognitive disorders. J Alzheimers Dis. 2012;30Suppl 2:S15-30.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.