Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2014 | 21 | 1 | 137-145

Article title

Impact of optical indices on particle size distribution of activated sludge measured by laser diffraction method


Title variants

Languages of publication



The important factors that strongly influence the particle size distributions measured by the laser diffraction method are the optical parameters of the suspension (refractive index and absorption coefficient). Knowledge of the values of these parameters is necessary for Mie theory. Mie theory is applied for conversion of the intensity of light recorded on detectors into particle size distribution (PSD) of tested material. Both wastewater and activated sludge are mixtures of a variety of elements (mineral or organic, including living organisms). In practice, it is not possible to define clearly the values of the optical parameters, as the composition of the suspension changes over time. The aim of the study was to estimate the impact of assumed values of the optical parameters on particle size distributions obtained. The PSDs of suspensions sampled in different stages of wastewater treatment are the most reproducible when the following optical parameters are defined: absorption coefficients - 1.0 and the refractive index - 1.52.
Czynnikami, które w istotny sposób wpływają na rozkłady granulometryczne wyznaczane za pomocą dyfrakcji laserowej, są parametry optyczne mierzonej zawiesiny (współczynnik załamania światła oraz współczynnik absorpcji). Znajomość wartości tych parametrów jest niezbędna przy zastosowaniu teorii Mie. Teoria Mie jest wykorzystywana do przeliczenia intensywności światła zmierzonego na detektorach na rozkład granulometryczny (PSD) badanego materiału. Zarówno ścieki, jak i osad czynny są mieszaninami bardzo różnych składników (mineralnych i organicznych, w tym żywych organizmów). W praktyce nie ma możliwości określenia rzeczywistych wartości parametrów optycznych mieszanin, tym bardziej, że ich skład zmienia się w czasie. Celem niniejszej pracy było określenie wpływu założonych wartości parametrów optycznych na uzyskiwane rozkłady granulometryczne. Rozkłady granulometryczne zawiesin pobranych na różnych etapach oczyszczania ścieków są najbardziej powtarzalne dla następujących wartości współczynników optycznych: współczynnika absorpcji - 1,0 i współczynnika załamania światła - 1,52.









Physical description


1 - 3 - 2014
9 - 4 - 2014


  • Institute of Agrophysics, Polish Academy of Sciences, ul. Doświadczalna 4, 20-290 Lublin, Poland, phone +48 81 744 50 61, fax +48 81 744 50 67
  • Institute of Agrophysics, Polish Academy of Sciences, ul. Doświadczalna 4, 20-290 Lublin, Poland, phone +48 81 744 50 61, fax +48 81 744 50 67
  • Faculty of Environmental Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland, phone +48 81 538 43 22


  • [1] Lee S, Basu S, Tyler CW, Wei IW. Ciliate populations as bio-indicators at Deer Island treatment plant. Advances Environ Res. 2004;8(2-4):371-378. DOI: 10.1016/S1093-0191(02)00118-1.[Crossref]
  • [2] Puigagut J, Salvado H, Garcia J. Short-term harmful effects of ammonia nitrogen on activated sludge microfauna. Water Res. 2005;39(18):4397-4404. DOI: 10.1016/j.watres.2005.08.008.[PubMed][Crossref]
  • [3] Pérez-Uz B, Arregui L, Calvo P, Salvadó H, Fernández N, Rodrígeuz E, et al. Assessment of plausible bioindicators for plant performance in advanced wastewater treatment systems. Water Res. 2010;44(17):5059-5069. DOI: 10.1016/j.watres.2010.07.024.[Crossref]
  • [4] Jiang JG, Shen YF. Use of the aquatic protozoa to formulate a community biotic index for an urban water system. Sci Total Environ. 2005;346(1-3):99-111. DOI: 10.1016/j.scitotenv.2004.12.001.[Crossref][PubMed]
  • [5] Madoni P. A sludge biotic index (SBI) for the evaluation of the biological performance of activated-sludge plants based on the microfauna analysis. Water Res. 1994;28(1):67-75. DOI: 10.1016/0043-1354(94)90120-1.[Crossref]
  • [6] Łagód G, Chomczyńska M, Montusiewicz A, Malicki J, Bieganowski A. Proposal of measurement and visualization methods for dominance structures in the saprobe communities. Ecol Chem Eng S. 2009;16(3):369-377.
  • [7] Malicki J, Montusiewicz A, Bieganowski A. Improvement of counting helminth eggs with internal standard. Water Res. 2001:35(9):2333-2335. DOI: 10.1016/S0043-1354(00)00517-0.[PubMed][Crossref]
  • [8] Bożek U, Kłapeć T. Correlation between biological agents and levels of heavy metals in municipal sewage sludge. Ann Agricult Environ Med. 2008;15(2):295-299.
  • [9] Arregui L, Serrano S, Linares M, Pérez-Uz B, Guinea A. Ciliate contributions to bioaggeregation: laboratory assays with axenic cultures of Tetrahymena thermophila. Internat Microbiol. 2007;10(2):91-96.
  • [10] Arregui L, Linares M, Pérez-Uz B, Guinea A, Serrano S. Involvement of crawling and attached ciliates in the aggregation of particles in wasterwater treatment plants. Air Soil Water Res. 2008;1:13-19.
  • [11] Pajdak-Stós A, Fiałkowska E, Fyda J, Babko R. Resistance of nitrifiers inhabiting activated sludge to ciliate grazing. Water Sci Technol. 2010;61(3):573-580. DOI: 10.2166/wst.2010.868.[Crossref][WoS]
  • [12] Spanjers H, Vanrolleghem P. Respirometry as a tool for rapid characterization of wastewater and activated sludge. Water Sci Technol. 1995;31(2):105-114.
  • [13] Lagarde F, Tusseau-Vuillemin M, Lessard P, Heduit A, Dutrop F, Mouchel JM. Variability estimation of urban wastewater biodegradable fractions by respirometry. Water Res. 2005;39(19):4768-4778. DOI: 10.1016/j.watres.2005.08.026.[Crossref][PubMed]
  • [14] Vollertsen J, Hvitved-Jacobsen T. Biodegradability of wastewater - a method for COD-fractionation. Water Sci Technol. 2002;45(3):25-34.
  • [15] Mąkinia J, Rosenwinkel KH, Spering V. Long term simulation of the activated sludge process at the Hanover-Gruemmerward pilot WWTP. Water Res. 2005;39(8):1489-1502. DOI: 10.1016/j.watres.2005.01.023.[PubMed][Crossref]
  • [16] Dulekgurgen E, Dogruel S, Karahan O, Orhon D. Size distribution of wastewater COD fractions as an index for biodegradability. Water Res. 2006;40(2):273-282. DOI: 10.1016/j.watres.2005.10.032.[PubMed][Crossref]
  • [17] Pasztor I, Thury P, Pulai J. Chemical oxygen demand fractions of municipal wastewater for modeling of wastewater treatment. Internat J Environ Sci Technol. 2009;6(1):51-56.
  • [18] Drewnowski J, Makinia J. Modeling hydrolysis of slowly biodegradable organic compounds in biological nutrient removal activated sludge systems. Water Sci Technol. 2013;67(9):2067-2074. DOI: 10.2166/wst.2013.092.[PubMed][Crossref]
  • [19] Nosalewicz M, Stępniewska Z, Nosalewicz A. Effect of soil moisture and temperature on N2O and CO2 concentrations in soil irrigated with purified wastewater. Internat Agrophys. 2013;27(3):299-304. DOI: 10.2478/v10247-012-0098-3.[Crossref]
  • [20] Qiu L, Zhu J, Zhu Y, Hong Y, Wang K,. Deng J. Land use changes induced soil organic carbon variations in agricultural soils of Fuyang County, China. J Soil Sediment. 2013;13(6):981-988. DOI: 10.1007/s11368-013-0684-4.[WoS][Crossref]
  • [21] Rojas R, Morillo J, Usero J, Delgado-Moreno L, Gan J. Enhancing soil sorption capacity of an agricultural soil by addition of three different organic wastes. Sci Total Environ. 2013;458:614-623. DOI: 10.1016/j.scitotenv.2013.04.032.[WoS][Crossref]
  • [22] Biggs CA, Lant PA. Activated sludge flocculation: on-line determination of floc size and the effect of shear. Water Res. 2000;34(9):2542-2550. DOI: 10.1016/S0043-1354(99)00431-5.[Crossref]
  • [23] Guellil A, Thomas F, Block JC, Bersillon JL, Ginestet P. Transfer of organic matter between wastewater and activated sludge flocs. Water Res. 2001;35(1):143-150. DOI: 10.1016/S0043-1354(00)00240-2.[Crossref][PubMed]
  • [24] Nopens I, Biggs CA, De Clerq B, Govoreanu R, Wilen BM, Lant P, et al. Modeling the activated sludge flocculation process combining laser light diffraction particle sizing and population balance modelling (PBM). Water Sci Technol. 2002;45(6):41-49.
  • [25] Bieganowski A, Łagód G, Ryżak M, Montusiewicz A, Chomczyńska M, Sochan A. Measurement of activated sludge particle diameters using laser diffraction method. Ecol Chem Eng S. 2012;19(4):597-608. DOI: 10.2478/v10216-011-0042-7.[Crossref]
  • [26] Tuszyńska A, Kołecka K. Particle size analysis of suspensions in removing of organic matter and phosphorus from wastewater and surface water. Architect Civil Eng Environ. 2012;4:113-119.
  • [27] Dereszewska A, Tuszyńska A, Cytawa S. Application of the laser diffraction particle size analyzer to the study of the changes of activated sludge structure in the presence of surfactant. Proc ECOpole. In print.
  • [28] Chung HY, Lee DJ. Porosity and interior structure of flocculated activated sludge floc. J Colloid Interface Sci. 2003;267(1):136-143. DOI: 10.1016/S0021-9797(03)00682-9.[PubMed][Crossref]
  • [29] Chu CP, Lee DJ. Structural analysis of sludge flocs. Advan Powder Technol. 2004;15(5):515-532. DOI: 10.1163/1568552042000246.[Crossref]
  • [30] Ryżak M, Bieganowski A. Methodological aspects of determining soil particle-size distribution using the laser-diffraction method. J Plant Nutr Soil Sci. 2011;174(4):624-633. DOI: 10.1002/jpln.201000255.[Crossref][WoS]
  • [31] Kovalenko CG, Babuin D. Inherent factors limiting the use of laser diffraction for determining particle size distributions of soil and related samples. Geoderma. 2013;193:22-28. DOI: 10.1016/j.geoderma.2012.09.006.[Crossref][WoS]
  • [32] Wang WP, Liu JL, Zhang JB, Li XP, Cheng YN, Xin WW, et al. Evaluation of laser diffraction analysis of particle size distribution of typical soils in China and comparison with the Sieve-Pipette method. Soil Sci. 2013;178(4):194-204. DOI: 10.1097/SS.0b013e31829908be.[WoS][Crossref]
  • [33] Ismail SB, de La Parra CJ, Temmink H, van Lier JB. Extracellular polymeric substances (EPS) in upflow anaerobic sludge blanket (UASB) reactors operated under high salinity conditions. Water Res. 2010;44(6):1909-1917. DOI: 10.1016/j.watres.2009.11.039.[Crossref]
  • [34] Karhu M, Kuokkanen V, Kuokkanen T, Rämö J. Bench scale electrocoagulation studies of bio oil-in-water and synthetic oil-in-water emulsions. Sep Purif Technol. 2012;96:296-305. DOI: 10.1016/j.seppur.2012.06.003.[WoS][Crossref]
  • [35] Wojcieszczuk T, Hammal O, Malinowski R, Wojcieszczuk M, Chorągwicki Ł. The activity of chemical components of light and heavy soil in Syria after use of municipal sewage sludge from Deir Ezzor City (in Polish). Soil Sci Ann. 2012;63(3):43-48.
  • [36] Walkiewicz A, Bulak P, Brzezińska M, Włodarczyk T, Polakowski C. Kinetics of methane oxidation in selected mineral soils. Internat Agrophys. 2012;26(4):401-406. DOI: 10.2478/v10247-012-0056-0.[Crossref]
  • [37] Nosalewicz A, Lipiec J. The effect of compacted soil layers on vertical root distribution and water uptake by wheat. Plant Soil. 2014;375:229-240. DOI:10.1007/s11104-013-1961-0.[Crossref][WoS]
  • [38] Sochan A, Bieganowski A, Ryżak M, Dobrowolski R, Bartmiński P. Comparison of soil texture determined by two dispersion units of Mastersizer 2000. Int Agrophys. 2012;26(1):99-102. DOI: 10.2478/v10247-012-0015-9.[Crossref][WoS]
  • [39] Eikelboom DH. Process Control of Activated Sludge Plants by Microscopic Investigation. London: IWA Publishing; 2000.
  • [40] Martín-Cereceda M, Serrano S, Guinea A. A comparative study of ciliated protozoa communities in activated-sludge plants. FEMS Microbiol Ecol. 1996;21(4):267-276. DOI: 10.1111/j.1574-6941.1996.tb00123.x.[Crossref]
  • [41] Pogue AJ, Gilbride KA. Impact of protozoan grazing on nitrification and the ammonia- and nitrite-oxidizing bacterial communities in activated sludge. Can J Microbiol. 2007;53(5):559-571. DOI: 10.1139/W07-027.[WoS][PubMed][Crossref]
  • [42] Malvern Instruments Ltd., Operators Guide, MAN 0247, Issue 2.0, October 1999, Worcestershire. WR14 1XZ, United Kingdom.
  • [43] Karczmarek AM, Gaca J. Effect of two-stage thermal disintegration on particle size distribution in sewage sludge. Polish J Chem Technol. 2013;15(3):69-73. DOI: 10.2478/pjct-2013-0047.[Crossref][WoS]
  • [44] Govoreanu R, Saveyn H, Van der Meeren P, Vanrolleghem PA. Simultaneous determination of activated sludge floc size distribution by different techniques. Water Sci Technol. 2004;50(12):39-46.
  • [45] Latimer P, Wamble F. Light scattering by aggregates of large colloidal particles. Appl Optics. 1982;21(13):2447-2455.
  • [46] Guan J, Waite TD, Amal R, Bustamante H, Wukasch R. Rapid determination of fractal structure of bacterial assemblages in wastewater treatment: Implications to process optimization. Water Sci Technol. 1998;28(2):9-15. DOI: 10.1016/S0273-1223(98)00426-0.[Crossref]
  • [47] ISO 13320:2009. Particle size analysis - Laser diffraction methods. International Organization for Standardization. Geneva. Switzerland.
  • [48] Le NT, Julcour C, Ratsimba B, Delmas H. Improving sewage sludge ultrasonic pretreatment under pressure by changing initial pH. J Environ Manage. 2013;128:548-554. DOI: 10.1016/j.jenvman.2013.06.001.[Crossref][WoS]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.