Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 21 | 1 | 101-112

Article title

Research on physico-chemical pretreatment of wastewater from the production of wood coating materials

Content

Title variants

Languages of publication

EN

Abstracts

EN
This paper presents the results of the research conducted on the installation designed for physico-chemical pretreatment of technological wastewater in the volume of up to 5.0 m3/day discharged from the production of protective and decorative coating materials used for wooden surfaces. The subject-matter installation constructed on a mobile pallet, consisted of a storage-averaging tank where concentrations were equalised with the use of circulation aeration and mixing. A variant, preliminary pre-oxidation with the use of hydrogen peroxide was conducted in this tank. A substantial installation set for the wastewater treatment plant consisted of two preliminary tube reactors, one cylindrical-conical processing reactor, stations for preparing and dispensing reagents and the sediment dewatering station. Considerable reductions in main chemical indicators of water pollution were obtained in the installation: both total suspended solids (TSS) and ether extract (EE) - more than 98%, chemical oxygen demand (COD) - 46-54%, biochemical oxygen demand (BOD5) - 39-46%, and free formaldehyde (HCHO) - 14-27% due to the use of pre-oxidation and the acid - alkaine double coagulation by applying the ALCAT 105 - SAX 25 system. The use of pre-oxidation with hydrogen peroxide in doses 250.0-450.0 mg/l and then two-stage coagulation resulted in an increase in the reduction of: COD and BOD5 by ca 10-15%, and HCHO by ca 58-66% with reference to the water pretreatment without pre-oxidation. The assessment of sediments formed during the process of pretreatment was made determining the leachable forms of metals (Cu, Ni and Ti) according to methodology of TCLP in compliance with the US EPA Method 1311.
PL
Przedstawiono wyniki badań prowadzonych na instalacji zbudowanej na potrzeby fizykochemicznego podczyszczania ścieków technologicznych w ilości do 5,0 m3/dobę z produkcji materiałów powłokowych, ochronnych i dekoracyjnych, stosowanych na powierzchnie drewniane. Przedmiotowa, mobilna instalacja zbudowana na przenośnej palecie, składała się ze zbiornika magazynująco-uśredniającego, w którym wyrównywanie stężeń prowadzono za pomocą napowietrzania i mieszania cyrkulacyjnego. Wariantowo w tym zbiorniku prowadzono wstępne utlenianie za pomocą nadtlenku wodoru. Zasadniczy zespół instalacji oczyszczalni tworzyły reaktory: dwa wstępne rurowe i procesowy cylindryczno-stożkowy, stacje przygotowania i dozowania reagentów oraz stacja odwadniania osadów. Stosując preutlenianie oraz podwójną koagulację kwaśno-alkaliczną układem ALCAT 105 - SAX 25, na instalacji uzyskiwano ponad 98% redukcję zawiesin ogółem (ZO) i ekstraktu eterowego (EE), 46-54% chemicznego zapotrzebowania na tlen (ChZT), 39-46% biochemicznego zapotrzebowania na tlen (BZT5) i 14-27% wolnego formaldehydu (HCHO). Zastosowanie wstępnego preutleniania za pomocą nadtlenku wodoru w dawkach 250,0-450,0 mg/dm3, a następnie dwustopniowej koagulacji skutkowało wzrostem redukcji ChZT i BZT5 ca 10-15%, a HCHO ca 58-66%, w relacji do wariantu bez preutleniania. Oceny powstających osadów po procesie podczyszczania dokonano, oznaczając wymywalne formy metali (Cu, Ni and Ti) według metodyki TCLP zgodnie z procedurą US EPA Method 1311.

Publisher

Year

Volume

21

Issue

1

Pages

101-112

Physical description

Dates

published
1 - 3 - 2014
online
9 - 4 - 2014

Contributors

  • Department of Chemical Technology and Engineering, University of Technology and Life Sciences, ul. Seminaryjna 3, 85-326 Bydgoszcz, Poland
  • Department of Chemical Technology and Engineering, University of Technology and Life Sciences, ul. Seminaryjna 3, 85-326 Bydgoszcz, Poland
  • Department of Environmental Engineering, Vilnius Gediminas Technical University, Sauletekio al. 11, LT-10223 Vilnius-40, Lithuania
  • Department of Research and Implementation, Projprzem-Eko Sp. z o.o., ul. Osiedlowa 1, 89-200 Zamość n. Bydgoszcz, Poland

References

  • [1] Jewell LL, Fasemore OA, Glasser D, Hildebrandt D, Heron L, Van Wyk N, et al. Toward zero waste production in the paint industry. Water SA. 2004;30(5):643-647.
  • [2] Kaczala F, Marques M, Hogland W. Biotreatability of wastewater generated during machinery washing in a wood-based industry: COD, formaldehyde and nitrogen removal. Bioresour Technol. 2010;101(23):8975-8983. DOI: 10.1016/j.biortech.2010.06.122.[WoS][Crossref]
  • [3] Huang CP, Ghadirian M. Physical chemical treatment of paint industry wastewater. J Water Pollut Contr Fed. 1974;46(10):2340-2346.
  • [4] Kutluay G, Babuna FG, Eremektar G, Orhon D. Treatability of water-based paint industry effluents. Fresenius Environ Bull. 2004;13(10):1057-1060.
  • [5] Oldring PKT. Coatings, Colorants, and Paints. In: Encyclopedia of Physical Science and Technology (Third Edition), Wimbledon, England UK: Academic Press; 2003; 175-190. DOI: 10.1016/B0-12-227410-5/00115-0.[Crossref]
  • [6] Höfer R. 10.22. Processing and Performance Additives for Coatings. Polymer Science - A Comprehensive Reference, Volume 10: Polymers Sust Environ Green Energy. 2012; 383-396. DOI: 10.1016/B978-0-444-53349-4.00273-9.[Crossref]
  • [7] Bulian F, Graystone JA. Chapter 3. Raw Materials for Wood Coatings (1) - Film Formers (Binders, Resins and Polymers), 53-94 and Chapter 5. Classification and Formulation of Wood Coatings, 137-154. In: Wood Coatings. Theory and practice. Elsevier; 2009; DOI: 10.1016/B978-0-444-52840-7.00005-9.
  • [8] Imam SH, Gordon SH, Mao L, Chen L. Environmentally friendly wood adhesive from a renewable plant polymer: characteristics and optimization. Polymer Degrad Stabil. 200;73(3):529-533. DOI: 10.1016/S0141-3910(01)00114-8.[Crossref]
  • [9] Landry V, Blanchet P, Weathering resistance of opaque PVDF-acrylic coatings applied on wood substrates. Progr Org Coating. 2012;75(4):494-501. DOI: 10.1016/j.porgcoat.2012.06.004.[Crossref]
  • [10] Liauw C, Allen NS, Edge M, Ortega A, Stratton J, McIntyre RB. Behaviour of nanoparticle (ultrafine) titanium dioxide pigments and stabilisers on the photooxidative stability of water based acrylic and isocyanate based acrylic coatings. Polymer Degrad Stabil. 2002;78(3):467-478. DOI: 10.1016/S0141-3910(02)00189-1.[Crossref]
  • [11] Donkers PAJ, Huinink HP, Erich SJF, Reuvers NJW, Adan OCG. Water permeability of pigmented waterborne coatings. Progr Org Coating. 2013;76(1):60-69. DOI: 10.1016/j.porgcoat.2012.08.011.[WoS][Crossref]
  • [12] Prasad MS, Reid KJ, Murray KK. Kaolin: processing, properties and applications. Appl Clay Sci. 1991;6(2):87-119. DOI: 10.1016/0169-1317(91)90001-P.[Crossref]
  • [13] Dhyani S, Kamdem DP. Bioavailability and form of copper in wood treated with copper-based preservative. Wood Sci Tech. 2012;46(6):1203-1213. DOI: 10.1007/s00226-012-0475-x.[Crossref]
  • [14] Grāvitis J, Ābolinš J, Tupčiauskas R, Vēveris A. Lignin from steam-exploded wood as binder in wood composites. J Environ Eng Landsc Manage. 2010;18(2):75-84. DOI: 10.3846/jeelm.2010.09.[Crossref]
  • [15] Bellotti N, Deyá C, del Amo B, Romagnoli R. “Quebracho” tannin derivative and boosters biocides for new antifouling formulations. J Coating Tech Res. 2012;9(5):551-559. DOI: 10.1007/s11998-012-9403-0.[Crossref]
  • [16] Grynkiewicz-Bylina B. Testing of toxic elements migration from the materials used as toy coatings. Ecol Chem Eng S. 2011;18(2):223-231.
  • [17] Hellgren A-C, Weissenborn P, Holmberg K. Surfactants in water-borne paints. Progr Org Coating. 1999;35(1-4):79-87. DOI: 10.1016/S0300-9440(99)00013-2.[Crossref]
  • [18] Holmberg K. Unsaturated monoethanolamide ethoxylates as paint surfactants. Progr Colloid Polymer Sci. 1996;101:69-74. DOI: 10.1007/BFb0114446.[Crossref]
  • [19] Garrido JM, Méndez R. Treatment of wastewaters from a formaldehyde-urea adhesives factory. Water Sci Tech. 2000;42(5-6):293-300.
  • [20] Eiroa M, Vilar A, Kennes C, Veiga MC. Biological treatment of industrial wastewater containing formaldehyde and formic acid. Water SA. 2006;32(1):115-118.
  • [21] Campos JL, Sanchez M, Corral-Mosquera A, Mendez R, Lema JM. Coupled BAS and anoxic USB system to remove urea and formaldehyde from wastewater. Water Res. 2003;37(14):3445-3451. DOI: 10.1016/S0043-1354(03)00011-3.[PubMed][Crossref]
  • [22] Dovletoglou O, Philippopoulos C, Grigoropoulou H. Coagulation for treatment of paint industry wastewater. J Environ Sci Health Part A. 2002;37(7):1361-1377. DOI: 10.1081/ESE-120005992.[Crossref]
  • [23] Aboulhassan MA, Souabi S, Yaacoubi A, Baudu M. Improvement of paint effluents coagulation using natural and synthetic coagulant aids. J Hazard Mater. 2006;138(1):40-45. DOI: 10.1016/j.jhazmat.2006.05.040.[PubMed][Crossref]
  • [24] Kabdasli I̧, Tun̈ ay O, Konuk K, Eţcǐoglu G, Koca̧ bas E. Treatability of wastewaters originating from water-based paint production with latex binder. Fresenius Environ Bull. 2012;21(10A):3122-3126.
  • [25] Eremktar G, Goksen S, Babuna FG, Dogruel S. Coagulation-flocculation of wastewaters from a water-based paint and allied products industry and its effect on inert COD. J Environ Sci Health Part A. 2006;41(9):1843-1852. DOI: 10.1080/10934520600779018.[Crossref]
  • [26] Balasco AA. Development of a new process for treatment of paint sludge wastes. Task Order Number 6. Final Report to United States Army Toxic and Hazardous Materials Agency; 1987. www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA197657.
  • [27] Zagklis DP, Koutsoukos PG, Paraskeva CA. A combined coagulation/flocculation and membrane filtration process for the treatment of paint industry wastewaters. Ind Eng Chem Res. 2012;51(47):15456-15462. DOI: 10.1021/ie302086j.[Crossref][WoS]
  • [28] Tünay O, Kocabaş E, Olmez-Hanci T, Kabdaşh I. Characterization and treatability of latex and PVA based paint production wastewaters. Fresenius Environ Bull. 2010;19(9):1884-1888.
  • [29] http://www.kemipol.com.pl/products.
  • [30] Talinli I, Anderson GK. Interference of hydrogen peroxide on the standard COD test. Water Res. 1992;26:107-110. DOI: 10.1016/0043-1354(92)90118-N.[Crossref]
  • [31] Kang YW, Cho MJ, Hwang KY. Correction of hydrogen peroxide interference on standard chemical oxygen demand test. Water Res. 1999;33:1247-1251. DOI: 10.1016/S0043-1354(98)00315-7.[Crossref]
  • [32] Lee E, Lee H, Kim YK, Sohn K, Lee K. Hydrogen peroxide interference in chemical oxygen demand during ozone based advanced oxidation of anaerobically digested livestock wastewater. Int J Environ Sci Tech. 2011;8(2):381-388.[WoS][Crossref]
  • [33] US EPA Method 1311. Toxicity characteristic leaching procedure (TCLP); 1992.
  • [34] Markowska-Szczupak A, Ulfig K, Morawski AW. The application of titanium dioxide for deactivation of bioparticulates: An overview. Catal Today. 2011;169(1):249-257. DOI: 10.1016/j.cattod.2010.11.055.[Crossref][WoS]
  • [35] Malakootian M, Almasi A, Hossaini H. Pb and Co removal from paint industries effluent using wood ash. Int J Environ Sci Tech. 2008;5(2):217-222.[WoS][Crossref]
  • [36] http://h2o2.com/industrial/applications.aspx?pid=109&name=Formaldehyde-Oxidation.
  • [37] http://www.solvaychemicals.us/static/wma/pdf/6/6/2/3/TP_CostEffect.pdf.
  • [38] Moussayi G, Yazdanbakhash A, Heidarizad M. The removal of formaldehyde from concentrated synthetic wastewater using O3/MgO/H2O2 process integrated with the biological treatment. J Hazard Mater. 2009;171(1-3):907-913. DOI: 10.1016/j.jhazmat.2009.06.090.[WoS][Crossref]
  • [39] Barbusiński K. Fenton reaction - controversy concerning the chemistry. Ecol Chem Eng S. 2009;16(3):347-358 and literature cited therein.
  • [40] Ledakowicz S, Bilińska L, Żyłła R. Application of Fenton’s reagent in the textile wastewater treatment under industrial conditions. Ecol Chem Eng S. 2012;19(2):163-174. DOI: 10.2478/v10216-011-0013-z.[Crossref]
  • [41] Bianco B, De Michelis I, Vegliò F. Fenton treatment of complex industrial wastewater: Optimization of process conditions by surface response method. J Hazard Mater. 2011;186(2-3):1733-1738. DOI: 10.1016/j.jhazmat.2010.12.054.[Crossref][PubMed]
  • [42] Kurt U, Avasara Y, Gonullua MT. Treatability of water-based paint wastewater with Fenton process in different reactor types. Chemosphere. 2006;64(9):1536-1540. DOI: 10.1016/j.chemosphere.2005.11.026.[Crossref][PubMed]
  • [43] Koppenol WH. The Haber-Weiss cycle - 70 years later. Redox Report. 2001;6(4):229-234. DOI: 10.1179/135100001101536373. [Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_eces-2014-0009
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.