Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 20 | 4 | 709-718

Article title

TERAHERTZ MEASUREMENT OF INDICATOR GAS EMISSION FROM COAL SPONTANEOUS COMBUSTION AT LOW TEMPERATURE

Content

Title variants

Languages of publication

EN

Abstracts

EN
Coal spontaneous combustion is an extremely complicated physical and chemical changing process. In order to improve the indicator gases detection technology and coal spontaneous combustion monitoring, a novel forecast method for toxic gases emission from coal oxidation at low temperature is presented in this paper. The experiment system is setup combined with frequency-domain terahertz technology and coal temperature programming device. The concentration curves of carbon monoxide and sulphur dioxide gases from coal spontaneous combustion are estimated according to molecule terahertz spectra. The influences of coal rank and oxygen supply on coal spontaneous combustion characteristics are discussed. Both carbon monoxide and sulphur dioxide gases absorption spectra show the characteristic equi-spaced absorption peaks. Results demonstrate that under the condition of lean oxygen, there exists a critical oxygen concentration in the process of coal oxidation at low temperature. Comparing with Fourier infrared spectrum testing, the presented method is highly accurate and more sensitive, especially suitable for early-stage monitoring of the indicator gases produced by coal spontaneous combustion.
PL
Spontaniczny zapłon węgla jest bardzo skomplikowanym procesem fizycznym i chemicznym. W artykule opisano usprawnienia technologii wykrywania gazów i monitorowania wskaźników spontanicznego zapłonu węgla, wynikające z opracowania nowatorskiej metody przewidywania emisji gazów toksycznych z utleniania węgla w niskiej temperaturze. Układu doświadczalny był zbudowany z systemu technologii częstotliwości terahercowych w połączeniu z technologią programowania temperatury węgla. Przebiegi krzywych stężenia tlenku węgla i ditlenku siarki z gazów samozapłonu węgla szacowane są na podstawie widma terahercowego. Przedstawiono wpływ rodzaju węgla i zaopatrzenia w tlen na cechy charakterystyczne samoistnego zapłonu węgla. Widma absorpcji obu gazów, tj. tlenku węgla i ditlenku siarki, wykazują charakterystyczne, tak samo odległe, piki absorpcji. Wyniki pokazują, że w warunkach niskiej zawartości tlenu istnieje pewne krytyczne stężenie tego gazu w procesie utleniania węgla w niskiej temperaturze. Porównując wyniki badań z widmem Fouriera w podczerwieni, można uznać, że przedstawiona metoda jest dokładniejsza i czulsza, nadając się szczególnie do monitorowania wczesnej fazy wytwarzania gazów wskaźnikowych, produkowanych przy samozapłonie węgla

Publisher

Year

Volume

20

Issue

4

Pages

709-718

Physical description

Dates

published
1 - 12 - 2013
online
22 - 01 - 2014

Contributors

author
  • School of Safety Engineering, China University of Mining and Technology, XU-ZHOU City, China
  • School of Safety Engineering, China University of Mining and Technology, XU-ZHOU City, China
author
  • State Key Laboratory of Coal Resources and Safe Mining, XU-ZHOU City, China
author
  • State Key Laboratory of Coal Resources and Safe Mining, XU-ZHOU City, China
author
  • Key Laboratory of Gas and Fire Control for Coal Mines, XU-ZHOU City, China

References

  • [1] Pone JDN, Hein KAA, Stracher GB, Annegarn HJ, Finkelman RB, Blake DR, et al. The spontaneous combustion of coal and its by-products in the Witbank and Sasolburg coaldfields of South Africa. Int J Coal Geol. 2007;72:124-140. DOI: 10.1016/j.coal.2007.01.001.[WoS][Crossref]
  • [2] Misz M, Fabiańska M, Ćmiel S. Organic components in thermally altered coal waste: preliminary petrographic and geochemical investigations. Int J Coal Geol. 2007;71:405-424. DOI: 10.1016/j.coal.2006.08.009.[WoS][Crossref]
  • [3] Misz M, Fabiańska M. Thermal transformation of organic matter in coal waste from Rymer Cones (Upper Silesian Coal Basin, Poland). Int J Coal Geol. 2010;81(4):343-358. DOI: 10.1016/j.coal.2009.08.009.[WoS][Crossref]
  • [4] Finkelman RB. Potential health impacts of burning coal beds and waste banks. Int J Coal Geol. 2004;51:19-24. DOI: 10.1016/j.coal.2003.11.002.[Crossref]
  • [5] Simoneit BRD, Bi X, Orors DR, Medeiros PM, Sheng G, Fu J. Phenols and hydroxy-PAHs (arylphenols) as tracer for coal smoke particulate matter: source tests and ambient aerosol assessment. Environ Sci Technol. 2007;41:7294-7302. DOI: 10.1021/es071072u.[Crossref][WoS]
  • [6] Stracher GB, Taylor TP. Coal fires burning out of control around the world: thermodynamic recipe for environmental catastrophe. Int J Coal Geol. 2004;59:7-17. DOI:10.1016/j.coal.2003.03.002.[Crossref]
  • [7] Stracher GB, Hower JC, Schroeder PA, Fleisher C, Kitson J, Barwick LH, et al. Environmental dangers of coal fires in Kentucky and Alabama. Geological Society of America Abstracts with Program, 2008;310-7.
  • [8] Hower JC, Henke K, O'Keefe JMK, Engle MA, Blake DR, Stracher GB. The Tiptop coal mine fire, Kentucky: preliminary investigation of the measurement of mercury, carbon dioxide and carbon monoxide from coal-fire gas vents. Int J Coal Geol. 2009;80: 63-67. DOI: 10.1016/j.coal.2009.08.005.[Crossref]
  • [9] Hower JC, Rangwala AS, O'Keefe JMK, Henke K, Engle MA. Time series analysis of CO emissions from a coal fire, Eastern Kentucky. Geochim Cosmochim Acta. 2010;74:A422.
  • [10] Ribeiro J, Ferreira da Silva E, Flores D. Burning of coal waste piles from Douro Coalfield (Portugal): petrological, geochemical and mineralogical characterization. Int J Coal Geol. 2009;81(4):359-372. DOI: 10.1016/j.coal.2009.10.005.[Crossref][WoS]
  • [11] Zhao Y, Zhang J, Chou CL, Li Y, Wang Z, Ge Y, et al. Trace element emissions from spontaneous combustion of gob piles in coal mines, Shanxi, China. Int J Coal Geol. 2008;73:52-62. DOI: 10.1016/j.coal.2007.07.007.[Crossref]
  • [12] O'Keefe JMK, Henke K, Hower JC, Engle MA, Stracher GB, Stucker JD, et al. CO, CO2, and Hg emission rates from the Truman Shepherd and Ruth Mullins coal fires, Eastern Kentucky. Sci Total Environ. 2010;408:1628-1633. DOI: 10.1016/j.scitotenv.2009.12.005.[WoS][Crossref]
  • [13] Matsushima N, Kazahaya K, Saito G, Shinohara H. Mass and heat flux of volcanic gas discharging from the summit crater of Iwodake volcano, Satsuma-Iwojima, Japan, during 1996-1999. J Volcanol Geotherm Res. 2003;126:285-301. DOI: 10.1016/S0377-0273(03)00152-5.[Crossref]
  • [14] Exter van M, Fattinger C, Grischkowsky D. Terahertz time-domain spectroscopy of water vapor. Opt Lett. 1989;14:1128-1130. DOI: 10.1364/OL.14.001128.[WoS][Crossref]
  • [15] Harde H, Zhao J. THz time-domain spectroscopy on ammonia. J Phys Chem A. 2001;105:6038-6047. DOI: 10.1021/jp0101099[Crossref]
  • [16] Matron S, Rohart F, Bocquetr R. Terahertz spectroscopy applied to the measurement of strengths and serf-broadening coefficients for high-J lines of OCS. J Mol Spectrosc. 2006;239:182-189. DOI: 10.1016/j.jms.2006.07.004.[Crossref]
  • [17] Hu Y, Wang XH, Guo LT, Zhang CL. Terahertz time domain spectroscopic study of carbon monoxide.Spectrosc Spect Anal. 2006;26(6):1008-1011.
  • [18] Almoayed NN, Piyade BC, Afsar MN. High-resolution absorption coefficient and refractive index spectra of common pollutant gases at millimeter and THz wavelengths. Proc SPIE, 2007;6772: 67720G. DOI: 10.1117/12.737143.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_eces-2013-0049
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.