Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2013 | 20 | 3 | 489-498

Article title

Action of Some Organomercury Compounds on Photosynthesis in Spinach Chloroplasts


Title variants

Languages of publication



The effects of five organomercury compounds (methylmercuric chloride, phenylmercuric acetate, phenylmercuric borate, phenylmercuric citrate and diphenylmercury) on photosynthetic electron transport (PET) in spinach chloroplasts were investigated. The IC50 values of organomercury compounds related to PET inhibition in spinach chloroplasts varied in the range from 468 mmol dm-3 to 942 mmol dm-3 and were approximately by one order higher than the corresponding value determined for HgCl2 applied also in DMSO solution (IC50 = 58 mmol dm-3). Due to extremely low aqueous solubility of diphenylmercury, the corresponding IC50 value could not be determined. Using EPR spectroscopy as probable sites of action of organomercury compounds in photosynthetic apparatus ferredoxin on the acceptor side of PS 1 and the quinone electron acceptors QA or QB on the reducing side of PS 2 were suggested.
Zbadano wpływ pięciu związków rtęcioorganicznych (chlorku metylortęci, octanu fenylortęci, boranu fenylortęci, cytrynianu fenylortęci i difenylortęci) na fotosyntetyczny transport elektronów (PET) w chloroplastach szpinaku. Wartości IC50 dla związków rtęcioorganicznych związanych z inhibicją PET w chloroplastach szpinaku zmieniała się w zakresie od 468 do 942 μmol dm-3 i była w przybliżeniu o rząd większa od odpowiedniej wartości określonej dla HgCl2, stosowanego również w roztworze DMSO (IC50 = 58 μmol dm-3). Ze względu na bardzo małą rozpuszczalność difenylortęci w wodzie odpowiednia wartość IC50 nie może być określona. Wyniki badań za pomocą spektroskopii EPR pozwoliły na zaproponowanie prawdopodobnych miejsc działania związków rtęci w procesie fotosyntezy ferredoksyny po stronie akceptora PS 1 i chinonowego akceptora elektronów QA lub QB po stronie redukującej PS 2.









Physical description


1 - 09 - 2013
08 - 10 - 2013


  • Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina CH2, SK-84215 Bratislava, Slovak Republic.
  • Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina CH2, SK-84215 Bratislava, Slovak Republic.


  • [1] Nieboer E, Richardson DH. The replacement of the nondescript term ‘heavy metals’ by a biologically and chemically significant classification of metal ions. Environ Pollut Ser B. 1980;1:3-26. DOI: http://dx.doi.org/10.1016/0143-148X(80)90017-8.[Crossref]
  • [2] Divine KK, Ayala-Fierro F, Barber DS, Carter DE. Glutathione, albumin, cysteine, and cys-gly effects on toxicity and accumulation of mercuric chloride in LLC-PK1 cells. J Toxicol Environ Health. 1999;57:489-505. DOI: 10.1080/009841099157566.[Crossref]
  • [3] Tao L, Ren J. Effect of Hg on seed germination, coleoptile growth and root elongation in seven pulses. Fresen Environ Bull. 2010;19;1144-1150.
  • [4] Cavusoglu K, Ergene A, Yalcin E, Tan S, Cavusoglu K, Yapar K. Cytotoxic effects of lead and mercury ions on root tip cells of Cicer arietinum L. Fresen Environ Bull. 2009;18:1654-1661.
  • [5] Zengin FK, Munzuroglu O. Effects of heavy metals Pb++, Cu++, Cd++, Hg++ on total protein and abscisic acid content of bean Phaseolus vulgaris L. cv. Strike seedlings. Fresen Environ Bull. 2006;15:227-282.
  • [6] Beauford W, Barber J, Barringer AR. Uptake and distribution of mercury within higher plants. Physiol Plant. 1977;39:261-265. DOI: 10.1111/j.1399-3054.1977.tb01880.x.[Crossref]
  • [7] Prasad DDK, Prasad ARK. Altered d-aminolevulinic acid metabolism by lead and mercury in germinating seedlings of Bajra Pennisetum typhoideum. J Plant Physiol. 1987;127:241-249. DOI: http://dx.doi.org/10.1016/S0176-1617(87)80143-8.[Crossref]
  • [8] Moreno-Jimenez E, Penalosa JM, Esteban E, Carpena-Ruiz RO. Mercury accumulation and resistance to mercury stress in Rumex induratus and Marrubium vulgare grown in perlite. J Plant Nutr Soil Sci. 2007;170:85-494. DOI: 10.1002/jpln.200625238.[WoS][Crossref]
  • [9] Schlegel H, Godbold DL, Hüttermann A. Whole plant aspects of heavy metal induced changes in CO2 uptake and water relation of spruce Picea abies seedlings. Physiol Plant. 1987;69:265-270. DOI: 10.1111/j.1399-3054.1987.tb04285.x.[Crossref]
  • [10] De Filippis LF, Hamp R, Ziegler H. The effects of sublethal concentrations of zinc, cadmium and mercury on Euglena. Growth and pigments. Z Pflanzenphysiol. 1981;103:37-47. DOI: http://dx.doi.org/10.1016/S0044-328X(81)80059-1.[Crossref]
  • [11] Mohanty RC, Mohanty L, Mohapatra PK. Effect of glucose, glutamate, and 2-oxoglutarate on mercury toxicity in Chlorella vulgaris. Bull Environ Contamin Toxicol. 1993;51:130-137.
  • [12] Kimimura M, Katoh S. Studies on electron transport associated with photosystem I. I. Functional site of plastocyanin: inhibitory effects of HgCl2 on electron transport and plastocyanin in chloroplasts. Biochim Biophys Acta. 1972;283:279-292. DOI: http://dx.doi.org/10.1016/0005-2728(72)90244-7.[Crossref]
  • [13] Rai LC, Singh AK, Mallick N. Studies of photosynthesis, the associated electron transport system of some physiological variable of Chlorella vulgaris under heavy metal stress. J Plant Physiol. 1991;137:419-424.
  • DOI: http://dx.doi.org/10.1016/S0176-1617(11)80310-X.[Crossref]
  • [14] De Filippis LF, Hamp R, Ziegler H. The effects of sublethal concentrations of zinc, cadmium and mercury on Euglena. Adenylates and energy charge. Z Pflanzenphysiol. 1981;103:1-7. DOI: http://dx.doi.org/10.1016/S0044-328X(81)80234-6.[Crossref]
  • [15] Jung YS, Yu L, Golbeck JH. Reconstitution of iron-sulfur center FB results in complete restoration of NADP+ photoreduction in Hg-treated photosystem I complexes from Synechococcus sp. PCC 6301. Photosynth Res. 1995;46:249-255.
  • [16] Šeršeň F, Kráľová K, Bumbálová A. Action of mercury on the photosynthetic apparatus of spinach chloroplasts. Photosynthetica. 1998;35:551-559. DOI: 10.1023/A:1006931024202.[Crossref]
  • [17] Šeršeň F, Kráľová K. New facts about CdCl2 action on pohotosynthetic apparatus of spinach chloroplasts and its comparison with HgCl2 action. Photosynthetica. 2001;39:575-580. DOI: 10.1023/A:1015612330650.
  • [18] Murthy SDS, Mohanty N, Mohanty P. Prolonged incubation with low concentration of mercury alters energy transfer and chlorophyll Chl a protein complexes in Synechococcus 6301: changes in Chl a absorption and emission characteristics and loss of the F695 band. BioMetals. 1995;8;237-242.
  • [19] Prokowski Z. Effects of HgCl2 on long-lived delayed luminiscence in Scenedesmus quadricauda. Photosynthetica. 1993;28:563-566.
  • [20] Siegenthaler PA, Packer L. Light-dependent volume changes and reactions in chloroplasts I. Action of alkenylsuccinic acids and phenylmercuric acetate and possible relation to mechanisms of stomatal control. Plant Physiol. 1965;40:785-791. DOI: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC550381/.
  • [21] Honeycutt RC, Krogmann DW. Inhibition of chloroplast reactions with phenylmercuric acetate. Plant Physiol. 1972;49:376-380. DOI: http://dx.doi.org/10.1104/pp.49.3.376.[Crossref]
  • [22] Godbold DL, Hüttermann A. Inhibition of photosynthesis and transpiration in relation to mercury-induced root damage in spruce seedlings. Physiol Plant. 1998;74:270-275. DOI: 10.1111/j.1399-3054.1988.tb00631.x.[Crossref]
  • [23] Singh CB, Singh SP. Effect of mercury on photosynthesis in Nostoc calcicola: Role of ATP and interacting heavy metal ions. J Plant Physiol. 1987;129:41-48. DOI: http://dx.doi.org/10.1016/S0176-1617(87)80101-3.[Crossref]
  • [24] Gates LF. Further experiments on black-leg disease of sugar-beet seedlings. Ann Appl Biol. 1959;47:502-510. DOI: 10.1111/j.1744-7348.1959.tb07282.x.[Crossref]
  • [25] Matorin DN, Osipov VA., Seifullina NK, Venediktov PS, Rubin AB. Increased toxic effect of methylmercury on Chlorella vulgaris under high light and cold stress conditions. Microbiology. 2009;78:321-327. DOI: 10.1134/S0026261709030102.[WoS][Crossref]
  • [26] Kukarskikh GP, Graevskaya EE, Krendeleva TE, Timofeev KN, Rubin AB. Effect of methylmercury on the primary photosynthetic activity of green microalgae Chlamydomonas reinhardtii. Biofizika. 2003;48:853-859.
  • [27] Antal TK, Graevskaya EE, Matorin DN, Voronova EN, Pogosyan SY, Krendeleva TE, Rubin AB. Study of chloride mercury and methylmercury effects on the photosynthetic activity of diatom Thalassiosira weissflogii by fluorescence methods. Biofizika. 2004;49:72-78.
  • [28] Graevskaya EE, Antal TK, Matorin DN, Voronova EN, Pogosyan SI, Rubin AB. Evaluation of diatomea algae Thalassiosira weissflogii sensitivity to chloride mercury and methylmercury by chlorophyll fluorescence analysis. J Phys IV. 2003;107;569-572. DOI: 10.1051/jp4:20030367.[Crossref]
  • [29] Röderer G. Differential toxic effects of mercuric chloride and methylmercuric chloride on the freshwater alga Poterioochromonas malhamensis. Aquatic Toxicol. 1983;3:23-24.[Crossref]
  • [30] Walker DA. Preparation of higher plant chloroplasts. Methods Enzymol. 1980;69C:94-104.
  • [31] Šeršeň F, Balgavý P, Devínsky F. Electron spin resonance study of chloroplast photosynthetic activity in the presence of amphiphilic amines. Gen Physiol Biophys. 1990;9:625-633. DOI: http://www.gpb.sav.sk/1990/1990_06_625.pdf.
  • [32] Wellburn AR. The spectral determination of chlorophyll a and b as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol. 1994;144:307-313. DOI: http://dx.doi.org/10.1016/S0176-1617(11)81192-2.[Crossref]
  • [33] Xiao R, Ghosh S, Tanaka AR, Greenberg BM, Dumbroff EB. A rapid spectrophotometric method for measuring photosystem I and photosystem II activities in a single sample. Plant Physiol Biochem. 1997;35:411-417.
  • [34] Hoff AJ. Application of ESR in photosynthesis. Phys Rep. 1979;54:75-200. DOI: 10.1016/0370-1573(79)90016-4.[Crossref]
  • [35] Babcock GT, Sauer K. Electron paramagnetic resonance signal II in spinach chloroplasts. Biochim Biophys Acta. 1973;325:483-503. DOI: http://dx.doi.org/10.1016/0005-2728(73)90209-0. [Crossref]
  • [36] Debus RJ, Barry DA, Babcock GT, McIntosh L. Site-directed mutagenesis identifies a tyrosine radical involved in the photosynthetic oxygen-evolving system. Proc Natl Acad Sci USA. 1988;85:427-430. DOI: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC279562/.
  • [37] Blankenship RE, Babcock GT, Warden JT, Sauer K. Observation of a new EPR transient in chloroplasts that may reflect electron-donor to photosystem 2 at room-temperature. FEBS Lett. 1975;51:287-293.[Crossref]
  • [38] Debus RJ, Barry DA, Sithole I, Babcock GT, McIntosh L. Directed mutagenesis indicates that donor to P680+ in photosystem II is tyrosine-161 of the polypeptide. Biochemistry. 1988;27:9071-9074. DOI: 10.1021/bi00426a001.[Crossref]
  • [39] Izawa S. Acceptors and donors for chloroplast electron transport. Methods Enzymol. 1980;69C:413-434.
  • [40] Warden JT, Bolton JR. Flash photolysis-electron spin resonance studies of the dynamics of photosystem I in green-plant photosynthesis-I. Effects of acceptors and donors in subchlorolplast particles. Photochem Photobiol. 1974;20:251-262. DOI: 10.1111/j.1751-1097.1974.tb06575.x.[Crossref]
  • [41] Hook JM, Dean PAW, Hockless DCR. Trifluoromethanesulfonate, a standard for solid-state 199 Hg NMR. Acta Cryst C. 1995;51:1547-1549. DOI: 10.1107/S010827019500196X.[Crossref]
  • [42] Jackson TA. Mercury in aquatic ecosystems. In: Metal Metabolism in Aquatic Environments. Langston WJ, Bebianno MJ, editors. London: Chapman & Hall; 1998.
  • [43] Starý J, Kratzer K. Radiometric determination of stability constants of mercury species complexes with L-cysteine. J Radioanal Nucl Chem. 1989;126:69-75. DOI: 10.1007/BF02164804.[Crossref]
  • [44] Gilmour CC, Henry EA, Mitchell R. Sulfate stimulation of mercury methylation in freshwater sediments. Environ Sci Technol. 1992;26:2281-2287. DOI: 10.1021/es00035a029. [Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.