Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 20 | 2 | 233-245

Article title

Contribution of Agricultural Field Production to Emission of Greenhouse Gases (Ghg)

Content

Title variants

Languages of publication

EN

Abstracts

EN
According to global inventories the agricultural field production contributes in a significant measure to increase of concentration of greenhouse gases (CO2, N2O, CH4) in the atmosphere, however their estimated data of emissions of soil origin differ significantly. Particularly estimates on nitrogen-oxides emissions show a great temporal and spatial variability while their formations in microbial processes are strongly influenced by biogeochemical and physical properties of the soil (eg microbial species, soil texture, soil water, pH, redox-potential and nutrient status) and land use management through the impact of the application of natural and synthetic fertilisers, tillage, irrigation, compaction, planting and harvesting. The different monitoring systems and inventory models were developed mostly from atmospheric chemistry point of view and little comprehensive data exist on the processes related to GHG emissions and their productions in agricultural soils under ecological conditions of Central Europe. This paper presents the new results of a project aimed elaboration of an experimental system suitable for studying relationships between the production and emission of greenhouse gases and plant nutrition supply in agricultural soils under Hungarian ecological conditions. The system was based on a long-term fertilisation field experiment. Mesocosm size pot experiments were conducted with soils originating from differently treated plots. The production of CO2 and N2O was followed during the vegetation period in gas traps built in 20 cm depth. Undisturbed soil columns were prepared from the untreated side parcels of the field experiment and the production of CO2 and N2O was studied at 20, 40 and 60 cm depth. A series of laboratory microcosm experiments were performed to clarify the microbial and environmental effects influencing the gas production in soils. The CO2 and N2O were determined by gas chromatography. The NOx was detected by chemiluminescence method in headspace of microcosms. In the mesocosm and soil columns experiments influence of plant nutrition methods and environmental factors was successfully clarified on seasonal dynamics and depth profile on CO2 and N2O productions. The database developed is suitable for estimating CO2 and N2O emissions from agricultural soils.
PL
Światowa produkcja rolnicza przyczynia się znacząco do zwiększenia stężenia gazów cieplarnianych (CO2, N2O, CH4) w atmosferze, jednak dane szacunkowe dotyczące tych emisji pochodzących z gleby różnią się istotnie. W szczególności dotyczy to tlenków azotu, których emisja wykazuje dużą zmienność czasową i przestrzenną, podczas gdy ich tworzenie w procesach mikrobiologicznych jest silnie uzależnione od biogeochemicznych i fizycznych właściwości gleby (np. gatunków mikroorganizmów, struktury gleby, wód glebowych, pH, potencjałów redoks i substancji odżywczych) oraz wpływu zarządzania gruntami poprzez stosowanie nawozów naturalnych i sztucznych, rodzaju uprawy, nawadniania, sadzenia i zbiorów. Różne systemy monitorowania i modele inwentaryzacyjne zostały opracowane głównie z punktu widzenia chemii atmosferycznej. Istnieje niewiele całościowych danych dotyczących emisji gazów cieplarnianych i ich produkcji w glebach rolniczych w warunkach ekologicznych Europy Środkowej. Przedstawiono nowe wyniki prac realizowanych w ramach projektu dotyczącego opracowania systemu doświadczalnego, odpowiedniego do badania relacji między produkcją i emisją gazów cieplarnianych a nawożeniem roślin w węgierskich warunkach ekologicznych. Eksperyment oparty był na długotrwałym doświadczeniu polowym. W doświadczeniach wykorzystano gleby pochodzące z różnych działek. W okresie wegetacyjnym produkcja CO2 i N2O była śledzona za pomocą pułapek gazowych umieszczonych na głębokości 20 cm. W celu wyjaśnienia wpływu procesów mikrobiologicznych i środowiskowych na produkcję gazu w glebie wykonano szereg mikroskalowych doświadczeń laboratoryjnych. Stężenia CO2 i N2O oznaczano metodą chromatografii gazowej. Stężenia NOx w górnych obszarach badanych mikrosystemów oznaczano metodą chemiluminescencji. W mezoskali i w kolumnach glebowych eksperymenty dotyczące wpływu metod dożywiania roślin i czynników środowiskowych z powodzeniem wyjaśniały dynamikę zmian sezonowych i produkcję CO2 i N2O w profilu głębokościowym. Opracowana baza danych jest odpowiednia do oszacowania emisji CO2 i N2O z gleb rolnych.

Publisher

Year

Volume

20

Issue

2

Pages

233-245

Physical description

Dates

published
1 - 06 - 2013
online
29 - 05 - 2013

Contributors

  • Department of Chemistry and Biochemistry, Szent István University, Páter K. u. 1., H-2100 Gödöllő, Hungary, phone +3628522073, fax +3628410804
  • Institute of Plant Production and Soil Sciences, University of Pannonia, Festetics u. 7., H-8360 Keszthely, Hungary, phone +3683545151, fax +3683545254
author
  • Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Hermann O. u. 15., H-1022 Budapest, Hungary, phone +36309617461, +36309617452, fax +3612122265
  • Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Hermann O. u. 15., H-1022 Budapest, Hungary, phone +36309617461, +36309617452, fax +3612122265
  • Department of Chemistry and Biochemistry, Szent István University, Páter K. u. 1., H-2100 Gödöllő, Hungary, phone +3628522073, fax +3628410804

References

  • [1] IPCC (Intergovernmental Panel on Climate Change). http://www.ipcc.ch/index.htm.
  • [2] GEIA (Global Emissions Initiative). http://www.geiacenter.org/.
  • [3] EDGAR (Emissions Database For Global Atmospheric Research). http://ies.jrc.ec.europa.eu/dataportals. html/#dp25.
  • [4] Rowlings D, Grace P, Kiese R, Scheer C. Quantifying N2O and CO2 emissions from a subtropical pasture. 19th World Congress of Soil Science, Soil Solutions for a Changing World. 1-6 August 2010. Brisbane, Australia. Published on DVD.
  • [5] Yang ZP, Turner DA, Zhang JJ, Wang YL, Chen MC, Zhang Q, Denmead OT, Chen D, Freney JR. Soil Res. 2011;49(5):462-469. DOI: 10.1071/Sr11107.[Crossref]
  • [6] Akimoto F, Matsunami A, Kamata Y, Kodama I, Kitagawa K, Arai N, et al. Energy. 2005;30:299-311.[Crossref]
  • [7] Mørkved PT, Dörsch P, Henriksen TM, Bakken LR. Soil Biol and Biochem. 2006;38:3411-3420.[Crossref]
  • [8] Ruser R, Flessa H, Russow R, Schmidt G, Buegger F, Munch JC. Soil Biol and Biochem. 2006;38:263-274.[Crossref]
  • [9] Lokupitiya E, Paustian K. J Environ Qual. 2005;35:1413-1417.
  • [10] Ganzeveld L. Soil-biogenic NOx emissions: global scale inventories. GEA Review 02/28/05. http://www.geiacenter.org/
  • [11] Conrad R. Soil microbial communities and global climate change - methanotrophic and methanogenic communities as paradigms. In: Modern Soil Microbiology. Second Edition. (VanElsas JD, Jansson J, Trevors, JT, editors.). Boca Raton (FL): CRC Press; 2007;263-282.
  • [12] Jungkunst HF, Bargsten A, Timme M, Glatzel S. Journal of Plant Nutrition and Soil Science. 2012;175(5):739-749. DOI: 10.1002/jpln.201100412.[Crossref]
  • [13] Ganzeveld L, Lelicveld J, Dentener FJ, Krol MC, Bouwman AF, Roelofs GJ. J Geophys Res. 2002;107:1029-1289.
  • [14] Galbally IE, Meyer CP, Wang YP, Kirstine WK, Smith CJ, Weeks IA. Measurements of soil-atmosphere exchange of CH4, CO, N2O and NOx in the semi-arid mallee system in Southeastern Australia. Centre for Australian Weather and Climate Research. Technical Report. 2008;002.1-62.
  • [15] Parton WJ, Holland EA, Del Grosso SJ, Hartman MD, Martin RE, Mosier AR, Ojima DS, Schimel DS. Journal of Geophysical Research: Atmospheres. 2001;106(D15):17403-17419. DOI: 10.1029/2001JD900101.[Crossref]
  • [16] Olander L, Wollenberg E, Tubiello F, Herold M. Environ Res Lett. 2013;(8):011002.1-7.DOI:10.1088/1748-9326/8/1/011002.[Crossref]
  • [17] Li D. PLoS ONE. 2013;8(3):e59360. DOI: 10.1371/journal.pone.0059360.
  • [18] Hoffmann S, Berecz K, Hoffmann B, Bankó L. Cereal Res Commun Suppl. 2008;36(1):1631-1634.
  • [19] Hoffmann S, Lepossa A, Balint A, Molnar E, Heltai G. Comparative study of some agronomic and environmental effects of mineral and organic fertilisation with maize (Zea Mays L.) in field and model pot experiments, 19. Istro Conference, (Montevideo) Abstract, 2012.
  • [20] Szili-Kovács T, Bálint Á, Kampfl Gy, Kristóf K, Heltai Gy, Hoffmann S, Lukács A, Anton A. Agrokemia es Talajtan. 2009;58:359-368.
  • [21] Szili-Kovács T, Molnár E, Villányi I, Bálint Á, Heltai Gy, Anton A. Acta Microbiol Et Immunol Hungarica. 2011;58:224-225.
  • [22] Szili-Kovács T, Molnár E, Villányi I, Knáb M, Bálint Á, Heltai Gy, Anton A. Plant Soil and Environ. (Submitted for publication).
  • [23] Kampfl G, Kristof K, Algaidi AA, Hamuda HEAFB, Heltai G. Microchem J. 2007;85(1):31-38.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_eces-2013-0016
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.