Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 20 | 1 | 177-198

Article title

Analysis of Solar Energy Resources in Southern Poland for Photovoltaic Applications / Analiza Struktury Zasobów Energii Słonecznej Obszaru Polski Południowej Do Zastosowań Fotowoltaicznych

Content

Title variants

Languages of publication

EN

Abstracts

EN
The article presents an analysis of the resources and the structure of the solar energy in the area of Southern Poland on the basis of complete meteorological data from the AGH University of Science and Technology in Krakow in 2009. An analysis attempt of its use for photovoltaic conversion using different modules with different spectral characteristics of absorbers was made. These latest methods for characterizing the structure of solar energy resources such as: distributions throughout the year: sky clearness or cloudiness indexes, the average values of photon energy (APE) and the contents of the useful fraction (UF) of the solar spectrum, are not yet widely known and used as in Poland and in other EU countries, despite the fact that most accurately determine the spectral matching factor for the chosen photovoltaic module. Due to the need for a very expensive measuring equipment, are used only by a few laboratories in the European Union, such as CREST (Centre for Renewable Energy Systems Technology) in the UK. The article presents - developed and used in the Opole University - a new low-cost method for determining of the spectrum with the use of above-mentioned indexes, including APE and UF, without buying an expensive spectroradiometer, which gives comparable results.
PL
W artykule przedstawiono analizę zasobów oraz struktury energii słonecznej obszaru Polski Południowej na podstawie pełnych danych meteorologicznych pochodzących z Akademii Górniczo-Hutniczej z Krakowa z 2009 r. Podjęto próbę dokonania analizy jego wykorzystania do celów konwersji fotowoltaicznej z wykorzystaniem różnych modułów o różnych charakterystykach spektralnych absorberów. Opisane najnowsze metody charakteryzujące strukturę zasobów energii słonecznej, takie jak rozkłady na przestrzeni całego roku: indeksów czystości nieba lub indeksów zachmurzenia, średnich wartości energii fotonów (APE) oraz zawartość użytecznych frakcji widma promieniowania słonecznego (UF), nie są jeszcze powszechnie znane i stosowane tak w Polsce, jak i w innych krajach UE, mimo że najtrafniej określają dopasowanie czynnika spektralnego do wybranego modułu fotowoltaicznego. Ze względu na konieczność posiadania bardzo drogiej aparatury pomiarowej są stosowane tylko przez nieliczne laboratoria w Unii Europejskiej, takie jak np. CREST (Centre for Renewable Energy Systems Technology) w Wielkiej Brytanii. W artykule zaprezentowano opracowaną i stosowaną w Uniwersytecie Opolskim nową i tanią metodę określania dopasowania widma z użyciem wskaźników, m.in. APE oraz UF, bez konieczności posiadania drogiego spektroradiometru, która daje porównywalne wyniki pomiarowe

Publisher

Year

Volume

20

Issue

1

Pages

177-198

Physical description

Dates

published
1 - 03 - 2013
online
23 - 02 - 2013

Contributors

  • Division of Physicochemical Research, Opole University, ul. kard. B. Kominka 6, 45-032 Opole, Poland, phone +48 77 453 89 76, fax +48 77 455 91 49
author
  • Department of Automatics and Biomedical Engineering, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków, Poland, phone +48 12 617 38 31
  • Institute of Industrial Electrotechnics, Faculty of Electrical Engineering, Czestochowa University of Technology, al. Armii Krajowej 17, 42-200 Częstochowa, Poland
  • Division of Physicochemical Research, Opole University, ul. kard. B. Kominka 6, 45-032 Opole, Poland, phone +48 77 453 89 76, fax +48 77 455 91 49

References

  • [1] Chojnacki JA, Teneta J, Więckowski Ł. System pomiaru parametrów środowiskowych na potrzeby monitorowania instalacji fotowoltaicznych. Pomiary, Automatyka, Kontrola. 2007;53(9bis):338-341 (in Polish).
  • [2] Żdanowicz T, Rodziewicz T, Wacławek M. Theoretical analysis of the optimum energy band gap of semiconductors for fabrication of solar cells for applications in higher latitudes location. Solar Energy Materials & Solar Cells. 2005;87:757-769.
  • [3] IEC 61853 (draft 82/254) - Performance testing and energy rating of terrestrial photovoltaic (PV) modules.
  • [4] IEC 61724: Photovoltaic System Performance Monitoring - Guidelines for Measurement, Data Exchange and Analysis.
  • [5] Blaesser G, Munro D. Guidelines for the Assessment of Photovoltaic Plants. Analysis and Presentation of Monitoring Data. Luxembourg: ECSC-EC-EAEC; 1993.
  • [6] Technical documentation of Sunny Boy 1100 inverter.
  • [7] Żdanowicz T, Graca B, Zaremba A, Rodziewicz T, Ząbkowska-Wacławek M. Model autonomicznej stacji PV Uniwersytetu Opolskiego. Proc. XIII Central European Conference ECOpole’04. 2004;385-391 (in Polish).
  • [8] Zaremba A, Graca B, Rodziewicz T, Wacławek M. Analiza pracy stacji PV Uniwersytetu Opolskiego w latach 1998-2005. Proc. XIV Central European Conference ECOpole’05 2005;493-498 (in Polish).
  • [9] Page J, Albuisson M, Wald L. The European solar radiation atlas: a valuable digital tool. Solar Energy. 2001;71:81-83.
  • [10] Rodziewicz T, Zaremba A, Wacławek M. Use of Clearness Indexes for Prediction of the Performance of PV Modules. Proc. 24th European Photovoltaic Solar Energy Conference and Exhibition. Hamburg: 2009;3523-3526.
  • [11] Suri M, Dunlop ED, Jones AR, Hofierka J. GIS-Based Inventory of the Potential Photovoltaic Output in Central and Eastern Europe. Proc. 18th European Photovoltaic Solar Energy Conference and Exhibition on Science, Technology and Application. Rome: 2002.
  • [12] Kasten F, Young A. Revised optical air mass tables and approximation formula. Applied Optics. 1989;28:4735-8.[Crossref][PubMed]
  • [13] Liu B, Jordan R. Solar Energy. 1960;4:1-19.
  • [14] Palz W. The European Solar Radiation Atlas. Brussels: Commission of the European Communities; 1984.
  • [15] Gueymard C. Assessment of the accuracy and computing speed of simplified saturation vapors equations using a new reference dataset. J Appl Meteorol. 1993;32(7):1294-1300.[Crossref]
  • [16] Gueymard C. Analysis of monthly average atmospheric precipitable water and turbidity in Canada and northern United States. Solar Energy. 1994;53(1):57-71.[Crossref]
  • [17] Keogh W, Blakers AW. Accurate measurement, using natural sunlight, of silicon solar cells. Progress in Photovoltaics. Research and Applications. 2004;12(1):1-19.
  • [18] Osterwald CR, et al. Extending the Spectral Range of Silicon-Based Direct-Beam Solar Spectral Radiometric Measurements. Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference. 1988.
  • [19] Rodziewicz T. Badanie półprzewodnikowych modułów fotowoltaicznych. PhD Thesis, Warsaw: Military University of Technology, 2004 (in Polish).
  • [20] Nann S, Riordan C. Solar spectral irradiance under clear and cloudy skies: measurements and a semiempirical model. J Appl Meteorol. 1991;30(4):447-462.[Crossref]
  • [21] Bird RE, Riordan C. Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the earth's surface for cloudless atmospheres. J Clim Appl Meteorol. 1986;25(1):87-97.[Crossref]
  • [22] Perez R, Seals R, Ineichen P, Stewart R, Menicucci D. A new simplified version of the Perez diffuse irradiance model for tilted surfaces. Solar Energy, 1987;39(3):221-231.[Crossref]
  • [23] Perez R, Stewart R, Arbogast C, Seals R, Scott J. An anisotropic hourly diffuse radiation model for sloping surfaces: description, performance validation, site dependency evaluation. Solar Energy. 1986;36(6):481-497.[Crossref]
  • [24] Żdanowicz T, Rodziewicz T, Ząbkowska-Wacławek M. Performance of PV Modules Fabricated in Different Technologies at Strongly Changeable Insolation Conditions. Proc. 17th European PV Solar Energy Conference. Munich: 2001;540-543.
  • [25] Rodziewicz T, Żdanowicz T, Ząbkowska-Wacławek M. Seasonal behaviour of different PV modules. Chem Inż Ekol. 2002;9(10):1241-1249.
  • [26] Chojnacki JA, Teneta J, Więckowski Ł. Influence of the way of integration of the PV system with the façade of a building on the quantity of the produced electric power. Proc. 22nd European Photovoltaic Solar Energy Conference. Milano: 2007;3249-3252.
  • [27] Chojnacki JA, Teneta J, Więckowski Ł. Potential of application of photovoltaic systems in urban environments example of the city of Krakow. Proc. 23rd European Photovoltaic Solar Energy Conference. Valencia: 2008;3374-3377.
  • [28] Chojnacki JA, Teneta J, Więckowski Ł. Two years' experience in monitoring of a small grid-connected photovoltaic power station. Proc. 24th European Photovoltaic Solar Energy Conference. Hamburg: 2009;4061-4064.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_eces-2013-0014
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.