Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 20 | 1 | 55-68

Article title

Water Effect on Oxidative Desulphurization Process of Straight-Run Kerosene Fraction / Wpływ Wody Na Utleniający Proces Odsiarczania Frakcji Nafty

Content

Title variants

Languages of publication

EN

Abstracts

EN
Sulphur dioxide obtained during fuels burning in combustion engines is one of the main pollutants. In diesel oils and gasolines the sulphur content must be 5-10 ppm and in jet fuels - 300-3000 ppm. However the production of hydrofined jet fuel is problematic. The reason is deterioration of fuel stability and antioxygenic properties. The oxidative desulphurization of straight-run kerosene was investigated. This method combines oxidation by atmospheric oxygen of sulphur compounds under increased temperature and pressure in the presence of water in the reaction medium, and removal of oxidized sulphur compounds from the oxidation-treated fuel via rectification. It was showed that water partially extracts from the hydrocarbon medium acidic compounds, formed in the beginning stage of oxidation, dissociation of which leads to the formation in water acidic medium. As a result, a pathway of the hydroperoxides decomposition partially changes from the formation of carbonic acids and oxyacids to the formation of alcohols, phenols and alkylphenols, which displayed an inhibitory effect in hydrocarbon oxidation. It was assumed that an inhibitory effect of water, in addition to the creation reverse micelles with peroxides and complexes with free radicals, caused by oxidation products created in the beginning stage of oxidation. The effect of water/kerosene ratio on the oxidative desulphurization of straight-run kerosene fraction has been examined. It was found that water improves process selectivity with insignificant influence on the degree of sulphur recovery. The optimum value of water/kerosene ratio for the fuel containing 0.15% mass of sulphuric compounds has been determined.
PL
Ditlenek siarki powstający podczas spalania paliw w silnikach spalinowych jest jednym z głównych zanieczyszczeń. W olejach napędowych i benzynie zawartość siarki powinna mieścić się w granicach 5-10 ppm, a w paliwach do silników odrzutowych - 300-3000 ppm. Jednak wykorzystanie paliwa lotniczego modyfikowanego metodą hydrorafinacji jest problematyczne ze względu na pogorszenie stabilności i właściwości utleniających takich paliw. Badano odsiarczanie frakcji naftowej metodą utleniania. Metoda ta łączy utlenianie tlenem atmosferycznym związków siarki przy podwyższonej temperaturze i ciśnieniu, w obecności wody w środowisku reakcji, oraz usunięcie utlenionych związków siarki z paliwa na drodze rektyfikacji. Wykazano, że woda częściowo wyodrębnia ze środowiska węglowodorowego kwaśne związki utworzone w początkowym etapie utleniania. Szlak rozkładu hydronadtlenków zmienia się częściowo z tworzenia kwasów karboksylowych i kwasów tlenowych na powstawanie alkoholi, fenoli i alkilofenoli, które okazały się inhibitorem utleniania węglowodorów. Założono, że hamujący wpływ wody, oprócz tworzenia miceli odwróconej z nadtlenkami i kompleksów z wolnymi rodnikami, spowodowany był produktami utleniania utworzonymi w początkowym etapie reakcji. Badano wpływ proporcji wody i frakcji naftowej na odsiarczanie oksydacyjne. Stwierdzono, że woda poprawia selektywność procesu i ma niewielki wpływ na stopień odzysku siarki. Ustalono optymalną wartość stosunku woda/frakcja naftowa dla paliwa zawierającego 0,15% masowych związków siarki.

Publisher

Year

Volume

20

Issue

1

Pages

55-68

Physical description

Dates

published
1 - 03 - 2013
online
23 - 02 - 2013

Contributors

  • Lviv Polytecniс National University, Bandery 12, 79013 Lviv, Ukraine
  • Lviv Polytecniс National University, Bandery 12, 79013 Lviv, Ukraine
  • Lviv Polytecniс National University, Bandery 12, 79013 Lviv, Ukraine
author
  • Lviv Polytecniс National University, Bandery 12, 79013 Lviv, Ukraine
  • Opole University, ul. Oleska 48, 45-591 Opole, Poland

References

  • [1] EPA-Gasoline RIA, Regulatory Impact Analysis-Control of Air Pollution from New Motor Vehicles: Tier 2 Motor Vehicle Emissions Standards and Gasoline Sulphur Control Requirements. US Environmental Protection Agency, Air and Radiation, EPA420-R-99-023. December 1999.
  • [2] EPA-RFG-II, Phase II RFG Report on Performance Testing. US Environmental Protection Agency, Air and Radiation, EPA420-R-99-025. April 1999.
  • [3] Directive of the European Parliament and of the Council, Brussels COM. 2001, 11.05.
  • [4] EPA, Control of Air Pollution from New Motor Vehicles Amendment to the Tier-2/Gasoline Sulphur Regulations, US Environmental Protection Agency. April 2001.
  • [5] Dixson-Decleve S. World Refining. 2004;14:19.
  • [6] EPA-Diesel RIA, Regulatory Impact Analysis: Heavy-duty Engine and Vehicle Standards and Highway Diesel Fuel Sulphur Control Requirements, United States Environmental Protection Agency, Air and Radiation, EPA420-R-00-026. December 2000.
  • [7] EPA, EPA Gives the Green Light on Diesel Sulphur Rule, Press Release, United States Environmental Protection Agency. February 2001.
  • [8] Sayles R. Hydrocarbon processing. 2005;84:39-43.
  • [9] Anonymous. World Refining Houston. 2005;15:17.
  • [10] Anonymous. World Refining Houston. 2005;15:14.
  • [11] Anonymous. World Refining Houston. 2005;15:14.
  • [12] Murata S, Murata K, Kidena K, Nomur M. Energy Fuels. 2004;18:116-121.
  • [13] Anonymous. World Refining Houston. 2004;14:20.
  • [14] Anonymous. World Refining Houston. 2004;14:21.
  • [15] Glunt J. World Refining 2004;14:46-49.
  • [16] Peckham J. World Refining Houston. 2004;14:26.
  • [17] Anonymous. World Refining Houston. 2005;15:11.
  • [18] Anonymous. World Refining Houston. 2005;15:9.
  • [19] Anonymous. World Refining Houston. 2005;15:10.
  • [20] Anonymous. World Refining Houston. 2004;14:18.
  • [21] Anonymous. World Refining Houston. 2005;15:13.
  • [22] Anonymous. World Refining Houston. 2005;15:14.
  • [23] Higgins T. Jet World Refining Houston. 2005;15:4.
  • [24] Link DD, Baltrus JP, Rothenberger KS. Energy & Fuels. 2003;17:1292-1302. DOI: 10.1039/B416929H.[Crossref]
  • [25] Peckham J. Gas-to-Liquids News. 2000;3:1.
  • [26] Peckham J. Diesel Fuel News. 2001;5:1.
  • [27] Kauffman RE. Eng. Gas Turb. Power. 1997;119:322-327.
  • [28] Controlling Airport-Related Air Pollution. NESCAUM Report. Northeast States for Coordinated Air Use Management. Boston: MA; 2003.
  • [29] Mushrush GW, Beal EJ, Slone E, Hardy DR. Energy&Fuels. 1996;10:504-508.
  • [30] Babich IV, Moulijn JA. Fuel. 2003;82:607-631.
  • [31] Denisov ET, Afanas’ev IB. Oxidation and Antioxidants in Organic Chemistry and Biology. Boca Raton: CRC Press; 2005.
  • [32] Frankel EN. Lipid Oxidation, 2nd Ed. Glasgow: The Oily Press; 2005.
  • [33] Kamal-Eldin A. Lipid Oxidation Pathways. Champain, Illinois: AOCS PRESS; 2003. DOI: 10.1002/ejlt.200600090.[Crossref]
  • [34] Crytko MP, Bub GK. Ind Eng Chem Prod Res Dev. 1981; 20:481-486.
  • [35] Shiraishi Y, Naito T, Hirai T, Komasawa I. Chem Commun. 2001;14:1256-1257.
  • [36] Csanyi LJ, Jaky K. Phys. Chem Chem Phys. 2001;3:2018-2024.
  • [37] Kasaikina OT, Kartasheva ZS, Pisarenko LM. Russ J of General Сhem. 2008;78:1533-154.
  • [38] Kellerby SS, McClements DJ, J. Decker EA. Agric. Food Chem. 2006;54:7879.
  • [39] Burlakovoi EB, Kasaikinoi OT, Kartashovoi ZS, Maksimovoi TV. Okislenie, okislitel'nyi stress i antioksidanty (in Russian). Moskva: RUDN; 2006.
  • [40] Hayvanovych VI. Issledovaniye okisleniya vysokomolekulyarnyh soyedinyenij niefti kyslorodom vozduha v vodno-emuljsionnoyj sredye i v benzoljnom rastvorye (in Russian) [PhD Thesis]. Lviv: LPI; 1980.
  • [41] Hayvanovych VI, Paniv PM, Pysh’yev SV, Antonyshyn VI. Naftova i gazova promyslovist (in Ukrainian). 2001;5:47.
  • [42] Csanyi LJ, Jaky K, Kiss JT. J of Mol Cat. 1993;80:353-364.
  • [43] Denisov ET, Mitskevich NI, Agabekov VE. Liquid Phase OxIdation of Oxygen-Containing Compounds. New York: Plenum Press; 1977.
  • [44] Moscher H, Warster CJ. Am Chem Soc. 1955;77:545.
  • [45] Hiatt RR, Visser T, Canad Chem Soc. 1964;42:1243.
  • [46] Rao TSS, Awasthi S. E-J of Chem Jan. 2007; 4:1-13.
  • [47] Kruzhalov BD, Golovanenko BI. Sovmesnoye polucensye fenola i acetona (in Russian). Moskva: Gosudarstvennoye nauchno-tehnicheskoye izdateljstvo himicheskoyj literatury; 1963.
  • [48] Spravochnik kchimika. V. 1-4 (in Russian). Moskva: Himiya; 1965.
  • [49] Michalak A. Polish J of Environ Stud. 2006; 15:523.
  • [50] Safonov AS, Ushakov AI, Hrishyn VV. Khimmotolohiya GSM (in Russian). SPb: NPIKC; 2007.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_eces-2013-0004
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.