Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 1 | 1 |

Article title

Generation of Molecular Shape Diverstiy. From Privileged Scaffolds to Diverted Total Synthesis

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
Molecular shape is a presentation of a molecule’s three-dimensional structure and its volume of space and surface electrostatic potential map collectively define the function, e. g. as a modulator or probe to biological targets. Molecular shape diversity for compound libraries with multiple scaffolds (rich skeletal diversity) is recognized as a prerequisite for discovering broad bioactivity. Established strategies and methodologies for diversity-oriented synthesis (DOS) are useful for generating molecular shape diversity by synthesizing natural product-like compounds. On the other hand, diverted total synthesis (DTS) offers natural products and analogues with a higher degree of structural diversity and complexity. Examples of DOS of privileged heterocycles and DTS of amphidinolide T marine macrolides from the author’s laboratories are illustrated.

Publisher

Year

Volume

1

Issue

1

Physical description

Dates

online
23 - 10 - 2012
received
4 - 10 - 2012
accepted
8 - 10 - 2012

Contributors

author
  • Laboratory of Advanced Catalysis and Synthesis, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China / Laboratory of Asymmetric Catalysis and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, China

References

  • [1] S. L. Schreiber, Bioorg. Med. Chem. 6, 1127 (1998)
  • [2] B. R. Stockwell, Nature 432, 846 (2004)
  • [3] D. P. Walsh, Y.-T. Chang, Chem . Rev. 106, 2476 (2006)
  • [4] S. L. Schreiber, Proc. Natl. Acad. Sci. USA 108, 6699 (2011)
  • [5] J. A. Grant, B. T. Pickup, J. Phys. Chem. 99, 3503 (1995)
  • [6] G. M. Makara, J. Med. Chem. 44, 3563 (2001)
  • [7] W. H. B. Sauer, M. K. Schwarz, J. Chem. Inf. Comput. Sci. 43, 987 (2003)
  • [8] A. Nicholls, G. B. McGaughey, R. P. Sheridan, A. C. Good, G. Warren, M. Mathieu, S. W. Muchmore, S. P. Brown, J. A. Grant, J. A. Haigh, N. Nevins, A. N. Jain, B. Kelley, J. Med. Chem. 53, 3862 (2010)
  • [9] E. E. Bolton, S. Kim, S. H. Bryant, J. Cheminformatics 3, 9 (2011)
  • [10] W. H. B. Sauer, M. K. Schwarz, Chimia 57, 276 (2003)
  • [11] G. Muncipinto, T. Kaya, J. A. Wilson, N. Kumagai, P. A. Clemons, S. L. Schreiber, Org. Lett. 12, 5230 (2010)
  • [12] J. K. Loh, S. Y. Yoon, T. B. Samarakoon, A. Rolfe, P. Porubsky, B. Neuenswander, G. H. Lushington, P. R. Hanson, Beilstein J. Org. Chem. 8, 1293 (2012)
  • [13] S. L. Schreiber, Science 287, 1964 (2000)
  • [14] D. R. Spring, Org. Biomol. Chem. 1, 3867 (2003)
  • [15] M. D. Burke, S. L. Schreiber, Angew. Chem. Int. Ed. 43, 46 (2004)
  • [16] D. S. Tan, Nat. Chem. Biol. 1, 74 (2005)
  • [17] R. J. Spandl, A. Bender, D. R. Spring, Org. Biomol. Chem. 6, 1149 (2008)
  • [18] W. R. J. D. Galloway, A. Isidro-Llobet, D. R. Spring, Nat. Commun. 1:80 (2010)
  • [19] A. Ulaczyk-Lesanko, D. G. Hall, Curr. Opin. Chem. Biol. 9, 266 (2005)
  • [20] B. Ganem, Acc. Chem. Res. 42, 463 (2009)
  • [21] J. E. Biggs-Houck, A. Younai, J. T. Shaw, Curr. Opin. Chem. Biol. 14, 371 (2010)
  • [22] A. Dömling, I. Ugi, Angew. Chem. Int. Ed. 39, 3169 (2000)
  • [23] A. Dömling, Chem. Rev. 106, 17 (2006)
  • [24] B. B. Touré, D. G. Hall, Chem. Rev. 109, 4439 (2009)
  • [25] T.-C. Chou, H. Dong, A. Rivkin, F. Yoshimura, A. E. Gabarda, Y. S. Cho, W. P. Tong, S. J. Danishefsky, Angew. Chem. Int. Ed. 42, 4762 (2003)
  • [26] A. Nefzi, J. M. Ostresh, J. Yu, R. A. Houghten, J. Org. Chem. 69, 3603 (2004)
  • [27] T. E. Nielsen, S. L. Schreiber, Angew. Chem. Int. Ed. 47, 48 (2008)
  • [28] T. Uchida, M. Rodriquez, S. L. Schreiber, Org. Lett. 11, 1559 (2009)
  • [29] A. B. Beeler, S. E. Schaus, J. A. Porco, Jr. Curr. Opin. Chem. Biol. 9, 277 (2005)
  • [30] A. Nören-Müller, I. Reis-Corrêa, Jr. H. Prinz, C. Rosenbaum, K. Saxena, H. J. Schwalbe, D. Vestweber, G. Cagna, S. Schunk, O. Schwarz, H. Schiewe, H. Waldmann, Proc. Natl. Acad. Sci. USA 103, 10606 (2006)
  • [31] A. Nadin, C. Hattotuwagama, I. Churcher, Angew. Chem. Int. Ed. 51, 1114 (2012)
  • [32] S. Shang, D. S. Tan, Curr. Opin. Chem. Biol. 9, 248 (2005)
  • [33] G. L. Thomas, E. W. Wyatt, D. R. Spring, Curr. Opin. Drug Discovery Dev. 9, 700 (2006)
  • [34] D. Morton, S. Leach, C. Cordier, S. Warriner, A. Nelson, Angew. Chem. Int. Ed. 48, 104 (2009)
  • [35] S. L. Schreiber, Nature 457, 153 (2009)
  • [36] G. M. Cragg, P. G. Grothaus, D. J. Newman, Chem. Rev. 109, 3012 (2009)
  • [37] A. D. Kinghorn, Y.-W. Chin, S. M. Swanson, Curr. Opin. Drug Discovery Dev. 12, 189 (2009)
  • [38] J. G. Napolitano, A. H. Daranas, M. Norte, J. J. Fernández, Anti-Cancer Agents Med. Chem. 9, 122 (2009)
  • [39] R. M. Wilson, S. J. Danishefsky, J. Org. Chem. 71, 8329 (2006)
  • [40] K. C. Nicolaou, J. S. Chen, S. M. Dalby, Bioorg. Med. Chem. 17, 2290 (2009)
  • [41] K. C. Nicolaou, C. R. H. Hale, C. Nilewski, H. A. Ioannidou, Chem. Soc. Rev. 41, 5185 (2012)[PubMed]
  • [42] P. A. Wender, B. L. Miller, Nature 460, 197 (2009)
  • [43] A. K. Ghosh, J. Org. Chem. 75, 7967 (2010)
  • [44] A. M. Szpilman, E. M. Carreira, Angew. Chem. Int. Ed. 49, 9592 (2010)
  • [45] A. Fürstner, Isr. J. Chem. 51, 329 (2011)
  • [46] S. B. Jones, B. Simmons, A. Mastracchio, D. W. C. MacMillan, Nature 475, 183 (2011)
  • [47] W.-M. Dai, Book of Abstracts of 8th International Symposium for Chinese Medicinal Chemists (ISCMC-8) & 9th IUPAC International Symposium on Biomolecular Chemistry (ISBOC-9), 25-29 Aug. 2012, Beijing, China, 52.
  • [48] M. E. Welsch, S. A. Snyder, B. R. Stockwell, Curr. Opin. Chem. Biol. 14, 347 (2010)
  • [49] W.-M. Dai, D.-S. Guo, L.-P. Sun, Tetrahedron Lett. 42, 5275 (2001)
  • [50] W.-M. Dai, L.-P. Sun, D.-S. Guo, Tetrahedron Lett. 43, 7699 (2002)
  • [51] L.-P. Sun, X.-H. Huang, W.-M. Dai, Tetrahedron 60, 10983 (2004)
  • [52] W.-M. Dai, K. W. Li, Tetrahedron Lett. 43, 9377 (2002)
  • [53] W.-M. Dai, D.-S. Guo, L.-P. Sun, X.-H. Huang, Org. Lett. 5, 2919 (2003)
  • [54] L.-P. Sun, W.-M. Dai, Angew. Chem. Int. Ed. 45, 7255 (2006)
  • [55] W.-M. Dai, J. Shi, Comb. Chem. High Throughput Screening 10, 837 (2007)
  • [56] C.-T. Chiou, G. S. Chen, M.-L. Chen, H. Li, L. Shi, X.-H. Huang, W.-M. Dai, J.-W. Chern, ChemMedChem 5, 1489 (2010)
  • [57] X. Xing, J. Wu, W.-M. Dai, Tetrahedron 62, 11200 (2006)
  • [58] W.-M. Dai, X. Wang, C. Ma, Tetrahedron 61, 6879 (2005)
  • [59] G. Feng, J. Wu, W.-M. Dai, Tetrahedron 62, 4635 (2006)
  • [60] J. Wu, L. Nie, J. Luo, W.-M. Dai, Synlett 2728 (2007)
  • [61] Y. Zheng, G. Yu, J. Wu, W.-M. Dai, Synlett 1075 (2010)
  • [62] X. Xing, J. Wu, G. Feng, W.-M. Dai, Tetrahedron 62, 6774 (2006)
  • [63] A. V. Gulevich, A. G. Zhdanko, R. V. A. Orru, V. G. Nenajdenko, Chem. Rev. 110, 5235 (2010)
  • [64] C. O. Kappe, Angew. Chem. Int. Ed. 43, 6250 (2004)
  • [65] P. Appukkuttan, E. Van der Eycken, Eur. J. Org. Chem. 1133 (2008)
  • [66] C. O. Kappe, D. Dallinger, Mol. Divers. 13, 71 (2009)
  • [67] S. Caddick, R. Fitzmaurice, Tetrahedron 65, 3325 (2009)
  • [68] C. R. Straussa, Aust. J. Chem. 62, 3 (2009)
  • [69] X. Xing, J. Wu, J. Luo, W.-M. Dai, Synlett 2099 (2006)
  • [70] G. Feng, J, Wu, W.-M. Dai, Tetrahedron Lett. 48, 401 (2007)
  • [71] J. Wu, Y. Jiang, W.-M. Dai, Synlett 1162 (2009)
  • [72] L.-C. Campeau, K. Fagnou, Chem. Commun. 1253 (2006)
  • [73] D. Alberico, M. E. Scott, M. Lautens, Chem. Rev. 107, 174 (2007)
  • [74] G. P. McGlacken, L. M. Bateman, Chem. Soc. Rev. 38, 2447 (2009)
  • [75] L. Ackermann, R. Vicente, A. R. Kapdi, Angew. Chem. Int. Ed. 48, 9792 (2009)
  • [76] F. Bellina, R. Rossi, Tetrahedron 65, 10269 (2009)
  • [77] J. Roger, A. L. Gottumukkala, H. Doucet, ChemCatChem 2, 20 (2010)
  • [78] J. Luo, J. Wu, Acta Cryst. E65, o1996 (2009)
  • [79] W.-M. Dai, J. Shi, J. Wu, Synlett 2716 (2008)
  • [80] W.-M. Dai, Y. Guan, J. Jin, Curr. Med. Chem. 12, 1947 (2005)
  • [81] Y. Guan, J. Wu, L. Sun, W.-M. Dai, J. Org. Chem. 72, 4953 (2007)
  • [82] W.-M. Dai, G. Feng, J. Wu, L. Sun, Synlett 1013 (2008)
  • [83] L. Sun, G. Feng, Y. Guan, Y. Liu, J. Wu, W.-M. Dai, Synlett 2361 (2009)
  • [84] L. Sun, J. Wu, W.-M. Dai, Tetrahedron: Asymmetry 20, 1864 (2009)
  • [85] J. Luo, H. Li, J. Wu, X. Xing, W.-M. Dai, Tetrahedron 65, 6828 (2009)
  • [86] H. Li, J. Wu, J. Luo, W.-M. Dai, Chem. Eur. J. 16, 11530 (2010)
  • [87] D. Wu, H. Li, J. Jin, J. Wu, W.-M. Dai, Synlett 895 (2011)
  • [88] L. Sun, D. Wu, J. Wu, W.-M. Dai, Synlett 3036 (2011)
  • [89] Y. Chen, J. Jin, J. Wu, W.-M. Dai, Synlett 1177 (2006)
  • [90] J. Jin, Y. Chen, Y. Li, J. Wu, W.-M. Dai, Org. Lett. 9, 2582 (2007)
  • [91] W.-M. Dai, Y. Chen, J. Jin, J. Wu, J. Lou, Q. He, Synlett 1737 (2008)
  • [92] Y. Liu, J. Wang, H. Li, J. Wu, G. Feng, W.-M. Dai, Synlett 2184 (2010)
  • [93] Y. Liu, G. Feng, J. Wang, J. Wu, W.-M. Dai, Synlett 1774 (2011)
  • [94] J. Kobayashi, M. Tsuda, Nat. Prod. Rep. 21, 77 (2004)
  • [95] J. Kobayashi, T. Kubota, J. Nat. Prod. 70, 451 (2007)
  • [96] J. Kobayashi, J. Antibiot. 61, 271 (2008)
  • [97] M. Tsuda, T. Endo, J. Kobayashi, J. Org. Chem. 65, 1349 (2000)
  • [98] J. Kobayashi, T. Kubota, T. Endo, M. Tsuda, J. Org. Chem. 66, 134 (2001)
  • [99] T. Kubota, T. Endo, M. Tsuda, M. Shiro, J. Kobayashi, Tetrahedron 57, 6175 (2001)
  • [100] M. Tsuda, N. Izui, K. Shimbo, M. Sato, E. Fukushi, J. Kawabata, K. Katsumata, T. Horiguchi, J. Kobayashi, J. Org. Chem. 68, 5339 (2003)
  • [101] M. Tsuda, N. Izui, K. Shimbo, M. Sato, E. Fukushi, J. Kawabata, J. Kobayashi, J. Org. Chem. 68, 9109 (2003)
  • [102] A. Fürstner, C. Aïssa, R. Riveiros, J. Ragot, Angew. Chem. Int. Ed. 41, 4763 (2002)
  • [103] C. Aïssa, R. Riveiros, J. Ragot, A. Fürstner, J. Am. Chem. Soc. 125, 15512 (2003)
  • [104] A. K. Ghosh, C. Liu, J. Am. Chem. Soc. 125, 2374 (2003)
  • [105] E. A. Colby, K. C. O’Brien, T. F. Jamison, J. Am. Chem. Soc. 126, 998 (2004)
  • [106] E. A. Colby, K. C. O’Brien, T. F. Jamison, J. Am. Chem. Soc. 127, 4297 (2005)
  • [107] L.-S. Deng, X.-P. Huang, G. Zhao, J. Org. Chem. 71, 4625 (2006)
  • [108] J. S. Yadav, C. S. Reddy, Org. Lett. 11, 1705 (2009)
  • [109] E. A. Colby, T. F. Jamison, Org. Biomol. Chem. 3, 2675 (2005)
  • [110] O. Lepage, E. Kattnig, A. Fürstner, J. Am. Chem. Soc. 126, 15970 (2004)
  • [111] A. Fürstner, E. Kattnig, O. Lepage, J. Am. Chem. Soc. 128, 9194 (2006)
  • [112] C. Rodríguez-Escrich, F. Urpí, J. Vilarrasa, Org. Lett. 10, 5191 (2008)
  • [113] J. H. Jung, E. Lee, Angew. Chem. Int. Ed. 48, 5698 (2009)
  • [114] A. Fürstner, E. Kattnig, G. Kelter, H.-H. Fiebig, Chem. Eur. J. 15, 4030 (2009)
  • [115] C. Trigili, B. Pera, M. Barbazanges, J. Cossy, C. Meyer, O. Pineda, C. Rodríguez-Escrich, F. Urpí, J. Vilarrasa, F. Díaz, I. Barasoain, ChemBioChem 12, 1027 (2011); correction, see: ChemBioChem 12, 1293 (2011)[Crossref]
  • [116] G. Seidel, A. Fürstner, Chem. Commun. 48, 2055 (2012)
  • [117] K. C. Nicolaou, P. G. Bulger, D. Sarlah, Angew. Chem. Int. Ed. 44, 4490 (2005)
  • [118] S. Kotha, M. K. Dipak, Tetrahedron 68, 397 (2012)
  • [119] S. Fukuzawa, K. Seki, M. Tatsuzawa, K. Mutoh, J. Am. Chem. Soc. 119, 1482 (1997) 120] J. S. Clark, F. Labre, L. H. Thomas, Org. Biomol. Chem. 9, 4823 (2011)
  • [121] L. Sun, W.-M. Dai, unpublished results

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_dos-2012-0003
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.