Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2014 | 2 | 1 |

Article title

Colloidal catalysts on the base of iron(3+) oxides for oxidative treatment of biomass


Title variants

Languages of publication



The analysis of the chemical nature of wood waste processing by fungus and bacteria was the starting point for innovative production of a new, relatively simple, colloidal catalytic system based on iron (III) oxides, combined with environmentally friendly oxidants - hydrogen peroxide and/or atmospheric oxygen. Colloidal iron(III) oxides, obtained by hydrolysis of Fe(III) salts in water in the presence of surfactants, catalyze the oxidative destruction of lignocellulosic biomass under atmospheric pressure, at a mild temperature range of 60-70oC, under the influence of H2O2 and O2. The oxidative destruction of biomass (wood sawdust, peat, olive press cake, oat straw) results in formation of light organic acids, esters and other low molecular oxidation products derived from lignin, hemicelluloses, cellulose, lipoproteins and sugars; the solid product constitutes mainly of cellulose and its derivatives. The yield of solid residue depends on biomass nature, reagents concentration ratio (biomass, catalyst, hydrogen peroxide), and oxidation process duration. Water solution of organic acids and esters can be used in agriculture for fodder processing.







Physical description


1 - 11 - 2013
24 - 12 - 2013
24 - 2 - 2014


  • N.N.Semenov Institute of Chemical Physics Russian Academy of Sciences
  • Oil and Gas Scientific Institute of Russian Academy of Sciences
  • N.N.Semenov Institute of Chemical Physics Russian Academy of Sciences


  • [1] http://www.nnfcc.co.uk/tools/marketing-study-for-biomass-treatment-technology-nnfcc-10-003#sthash.r86erW2E.dpuf
  • [2] Kamm, B. and Kamm, M. Biorefineries–multi product processes. Adv. Biochem Engin/Biotechnol , 2007; 105, 175–204.
  • [3] Kumar, P., Barrett, D.M., Delwiche, M.J., and Stroeve, P. Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Ind. Eng. Chem. Res., 2009; 48 (8), 3713–3729.[WoS][Crossref]
  • [4] D.Mohan, C.U.Pittman, Jr., and P.H.Steele, Pyrolysis of Wood/Biomass for Bio-Oil: A Critical Review, Energy & Fuels, 2006; 20, 848-889.[Crossref]
  • [5] McMillan, J.D. Pretreatment of lignocellulosic biomass, in Enzymatic Conversion of Biomass for Fuels Production, ed by Himmel, M.E., Baker, J.O., and Overend, R.P. American Chemical Society, Washington, DC, USA, 1994; 292–324.
  • [6] Zheng, Y., Pan, Z., and Zhang, R. Overview of biomass pretreatment for cellulosic ethanol production. Int. J. Agric. Biol. Eng. 2009; 2, 51–68.
  • [7] Galbe, M., and Zacchi, G. A review of the production of ethanol from softwood. Appl. Microbiol. Biot. 2002; 59, 618–628.[Crossref]
  • [8] Tomas-Pejo, E., Oliva, J.M., & Ballesteros, M. Realistic approach for full-scale bioethanol production from lignocellulose: a review. Journal of Scientific & Industrial Research. 2008; 67, 874–884.
  • [9] Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M. and Ladisch, M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technol. 2005; 96, 673–686.[Crossref]
  • [10] Harmsen, P.F.H., Huijgen, W.J.J., Bermudez Lopez, L.M., & Bakker, R.R.C. Literature Review of Physical and Chemical Pre-treatment Processes for Lignocellulosic Biomass. Energy Research Centre of the Netherlands. Report accessed on January 2010. Web Address: http://www.ecn.nl/docs/library/report/2010/e10013.pdf
  • [11] Michel, H. About the Nonsense of Biofuels, Angew. Chem. Int. Ed. 2012; 51(11), 2516-517.[Crossref]
  • [12] Kirk T.K. in Microbial Degradation of Organic Compounds, ed. Gibson D.T., Marcel Dekker, Inc., New York, 1984; 13, 399-438.
  • [13] Boeran W., Ralph J., Baucher M., Lignin biosynthesis. Annu. Rev.Plant Biol., 2003; 54, 519-549.[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.