PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 1 | 60-70
Article title

Production of hydrogen from steam reforming of glycerol
using nickel catalysts supported on Al2O3, CeO2 and ZrO2

Content
Title variants
Languages of publication
EN
Abstracts
EN
Nickel catalysts supported on Al2O3, CeO2 and ZrO2 were prepared by wet
impregnation method and evaluated in steam reforming of glycerol. The
catalysts were characterized by chemical composition, textural analysis,
crystalline structure and reducibility. The structural characterization of the
catalysts revealed a good dispersion of Ni particles using the Al2O3 support,
needing higher reduction temperature. The reactions were performed
at 500°C with 10 vol.% glycerol solution in a continuous flow reactor.
All catalysts showed conversions close to 100%. The selectivity to gas
products and formation of liquid by-products were found to be dependent
on the type of support. The H2 selectivity showed the following trend: ZrO2 > Al2O3 ≈ CeO2. The catalyst supported on CeO2 showed low activity
for water-gas shift reaction, with the highest CO selectivity. All catalysts
presented a low formation of CH4. In the liquid phase some by-products
were identified (hydroxyacetone, acetic acid, lactic acid, acetaldehyde,
acrolein and ethanol) and secondary reaction routes were proposed.
Coke formation was higher on Ni/Al2O3 catalyst, but no deactivation was
observed during 8 h of reaction.
Keywords
Publisher
Year
Volume
1
Pages
60-70
Physical description
Dates
accepted
04 - 01 - 2013
online
18 - 03 - 2013
received
27 - 11 - 2012
References
  • Shahid E.M., Jamal Y., A review of biodiesel as vehicular fuel,Renewable Sustainable Energy Rev., 2008; 12, 2484–2494.[WoS]
  • Dunn S., Hydrogen futures: toward a sustainable energysystem, Int. J Hydrogen Energy, 2002; 27, 235–264.
  • Adhikari S., Fernando S.D., Haryanto A., Hydrogenproduction from glycerin by steam reforming over nickelcatalysts, Renewable Energy, 2008; 33, 1097–1100.[WoS]
  • Kirtay E., Recent advances in production of hydrogen frombiomass, Energy Conv Manag, 2011; 52, 1778–1789.[WoS]
  • Johnson D.T., Taconi K.A., The glycerin glut: options for thevalue-added Conversion of crude glycerol resulting frombiodiesel production, Environ Progress, 2007; 26, 338–348.[WoS]
  • Cortright R.D., Davda R.R., Dumesic J.A., Hydrogen fromcatalytic reforming of biomass-derived hydrocarbons in liquidwater, Nature, 2002; 418, 964–967.
  • Davda R.R., Shabaker J.W., Huber G.W., Cortright R.D.,Dumesic J.A., A review of catalytic issues and processconditions for renewable hydrogen and alkanes by aqueousphasereforming of oxygenated hydrocarbons over supportedmetal catalysts, Appl. Catal. B Environ, 2005; 56, 171–186.
  • Adhikari S., Fernando S.D., Haryanto A., Production ofhydrogen by steam reforming of glycerin over aluminasupportedmetal catalysts, Catal. Today, 2007; 129, 355–364.
  • Sehested J., Four challenges for nickel steam-reformingcatalysts, Catal. Today, 2006; 111, 103–110.
  • Chiodo V., Freni S., Galvagno A., Mondello N., Frusteri F.,Catalytic features of Rh and Ni supported catalysts in thesteam reforming of glycerol to produce hydrogen, Appl.Catal. A Gen., 2010; 381, 1–7.
  • Huber G.W., Shabaker J.W., Dumesic J.A., Raney Ni-Sn Catalyst for H2 production from biomass-derivedhydrocarbons, Science, 2003; 300, 2075–2077.
  • Jun K.W., Roh H.S., Chary K.V.R., Structure and CatalyticProperties of Ceria-based Nickel Catalysts for CO2 Reformingof methane, Catal. Surv. Asia, 2007; 11, 97–113.[WoS]
  • Suzuki T., Morikawa A., Suda A., Sobukawa H., Sugiura M.,Kanazawa T., Suzuki J., Takada T., Alumina-ceria-zirconiacomposite oxide for three-way catalyst, R&D Review ofToyota CRDL, 2002; 37, 28–33.
  • Souza M.M.V.M., Aranda D.A.G., Schmal M., Reforming ofmethane with carbon dioxide over Pt/ZrO2/Al2O3 catalysts,.J Catal., 2001; 204, 498-511.
  • Zhuang Q., Qin Y., Chang L., Promoting effect of ceriumoxide in supported nickel catalyst for hydrocarbon steamreforming,Appl. Catal., 1991; 70, 1–8.
  • Tang S., Ji L., Lin J., Zeng H.C., Tan K.L., Li K., CO2 reformingof methane to synthesis gas over sol–gel-made Ni/γ-Al2O3catalysts from organometallic precursors, J. Catal., 2000;194, 424–30.
  • Therdthianwong S., Siangchin C., Therdthianwong A.,Improvement of coke resistance of Ni/Al2O3 catalyst in CH4/CO2 reforming by ZrO2 addition, Fuel Proc. Tech., 2008; 89,160–168.
  • Roh H.-S., Potdar H.S., Jun K.-W., Carbon dioxide reformingof methane over co-precipitated Ni–CeO2, Ni–ZrO2 and Ni–Ce–ZrO2 catalysts, Catal. Today, 2004; 93-95, 39–44.
  • Kim P., Kim Y., Kim H., Song I.K., Yi J., Synthesis andcharacterization of mesoporous alumina with nickelincorporated for use in the partial oxidation of methane intosynthesis gas, Appl. Catal. A Gen., 2004; 272, 157–166.
  • Zhu X., Huo P., Zhang Y., Cheng D., Liu C., Structure andreactivity of plasma treated Ni/Al2O3 catalyst for CO2reforming of methane, Appl. Catal. B Environ., 2008; 81,132–140.
  • Molina R., Poncelet G., α-alumina-supported nickel catalystsprepared from nickel acetylacetonate: A TPR study, J. Catal.,1998; 173, 257–267.
  • Zhang B., Tang X., Li Y., Xu Y., Shen W., Hydrogen productionfrom steam reforming of ethanol and glycerol over ceriasupportedmetal catalysts, Int. J. Hydrogen Energy, 2007;32, 2367–2373.
  • Wang Y., Zhu A., Zhang Y., Au C.T., Yang X., Shi C.,Catalytic reduction of NO by CO over NiO/CeO2 catalyst instoichiometric NO/CO and NO/CO/O2 reaction, Appl. Catal.B Environ., 2008; 81, 141–149.
  • Shyu J.Z., Weber W.H., Gandhi H.S., Surface characterizationof alumina-supported ceria, J. Phys. Chem., 1988; 92,4964–4970.
  • Dong W.-S., Roh H.-S., Jun K.-W., Park S.-E., Oh Y.-S.,Methane reforming over Ni/Ce-ZrO2 catalysts: effect ofnickel content, Appl. Catal. A Gen., 2002; 226, 63–72.
  • Xu S., Wang X., Highly active and coking resistant Ni/CeO2–ZrO2 catalyst for partial oxidation of methane, Fuel, 2005;84, 563–567.
  • Youn M.H., Seo J.G., Kim P., Kim J.J., Lee H.-I., Song I.K.,Hydrogen production by auto-thermal reforming of ethanolover Ni/γ-Al2O3 catalysts: Effect of second metal addition,Journal of Power Sources, 2006; 162, 1270–1274.
  • Iriondo A., Barrio V.L., Cambra J.F., Arias P.L., GüemezM.B., Navarro R.M., Sanchez-Sanchez M.C., Fierro J.L.G.,Influence of La2O3 modified support and Ni and Pt active phases on glycerol steam reforming to produce hydrogen,Catal. Comm., 2009; 10, 1275-1278.
  • Grenoble D.C., Estadt M.M., Ollis D.F., The chemistry andcatalysis of the water gas shift reaction : 1. The kinetics oversupported metal catalysts, J. Catalysis, 1981; 67, 90–102.
  • Ramírez-López C.A., Ochoa-Gómez J.R., Fernández-Santos M., Gómez-Jiménez-Aberasturi O., Alonso-VicarioA., Torrecilla-Soria J., Synthesis of lactic acid by alkalinehydrothermal conversion of glycerol at high glycerolconcentration, Ind. Eng. Chem. Res., 2010; 49, 6270–6278.[WoS]
  • Marins EP, Davis RJ. Hydrogenolysis of glycerol over carbonsupportedRu and Pt catalysts. J Catal 2007;249: 328–337.
  • Chheda J.N., Huber G.W., Dumesic J.A., Liquid-phasecatalytic processing of biomass-derived oxygenatedhydrocarbons to fuels and chemicals, Angew. Chem. Int.2007; 46, 7164–7183.[WoS]
  • Chai S.-H., Wang H.-P., Liang Y., Xu B.-Q., Sustainableproduction of acroleína: investigation of solid acid-basecatalysts for gas-phase dehydration of glycerol, GreenChem., 2007; 9, 1130–1136.[WoS][Crossref]
  • Corma A., Huber G.W., Sauvanaud L., O’Connor P., Biomassto chemicals: Catalytic conversion of glycerol/water mixturesinto acrolein, reaction network, J. Catal. 2008; 257, 163–171.
  • Pompeo F., Santori G., Nichio N.N., Hydrogen and/or syngasfrom steam reforming of glycerol. Study of platinum catalysts,In.t J. Hydrogen Energy, 2010; 35, 8912–8920.
  • King D.L., Zhang L., Xi G., Karim A.M., Heldebrant D.J.,Wang X., Petersona T., Wang Y., Aqueous phase reforming of glycerol for hydrogen production over Pt–Re supported oncarbon, Appl. Catal. B Environ., 2010; 99, 206–213.
  • Sánchez-Sánchez M.C., Navarro R.M., Fierro J.L.G., Ethanolsteam reforming over Ni/La–Al2O3 catalysts: Influence oflanthanum loading, Catal. Today, 2007; 129, 336–345.
  • Srisiriwat N., Therdthianwong S., Therdthianwong A.,Oxidative steam reforming of ethanol over Ni/Al2O3 catalystspromoted by CeO2, ZrO2 and CeO2-ZrO2, Int. J. HydrogenEnergy, 2009; 34, 2224–2234.[Crossref]
  • Iriondo A., Barrio V.L., Cambra J.F., Arias P.L., GuemezM.B., Sanchez-Sanchez M.C., Navarro R.M., Fierro J.L.G.,Glycerol steam reforming over Ni catalysts supported onceria and ceria-promoted alumina, Int. J. Hydrogen Energy,2010; 35, 11622–11633.[Crossref]
  • Iriondo A., Barrio V.L., Cambra J.F., Arias P.L., GuemezM.B., Navarro R.M., Sanchez-Sanchez M.C., Fierro J.L.G.,Hydrogen production from glycerol over nickel catalystssupported on Al2O3 modified by Mg, Zr, Ce or La, Top.Catal., 2008; 49, 46–58.
  • Adhikari S., Fernando S.D., Filip To S.D., Brick R.M., SteeleP.H., Haryanto A., Conversion of glycerol to hydrogen via asteam reforming process over nickel catalysts, Energy Fuels,2008; 22, 1220–1226.
  • Menezes A.O., Rodrigues M.T., Zimmaro A., BorgesL.E.P., Fraga M.A., Production of renewable hydrogenfrom aqueous-phase reforming of glycerol over Pt catalystssupported on different oxides, Renewable Energy, 2011; 36,595–599.[WoS]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_cse-2013-0001
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.