Preferences help
enabled [disable] Abstract
Number of results
2012 | 1 | 53-59
Article title

CaO/Y2O3 pellets for reversible CO2 capture in sorption enhanced reforming process.

Title variants
Languages of publication
Pellets of a novel, high temperature CO2 sorbent, made of
CaO-impregnated porous Y2O3, were prepared. Yttria pellets were
synthesized from a mixture of yttria powder and a softener. A combination
of ethylene glycol, used as a softener, and a casting method yielded
mechanically stable pellets after calcination at 800ºC. Treatment of the Y2O3 support at higher temperatures further increases the pellets strength. The
same effect of pellets strengthening was observed after yttria impregnation
with CaO. Sorption capacity of the pellets with CaO content of 9 wt. %,
measured at isothermal conditions of 740ºC, reaches 7.5 wt. % for shorter
recarbonation time of 20 min and 8.5 wt. % for a longer time of 1 hour.
In this respect, sorption properties of pelletized CaO/Y2O3 are similar to
those of powdered material. A distinctive feature of the pelletized CaO/Y2O3 sorbent pretreated at high temperatures is the increase in capacity during
the initial cycles.

Physical description
12 - 8 - 2012
18 - 8 - 2012
2 - 11 - 2012
  • Novosibirsk state university, Str. Pirogova 2, 630090, Novosibirsk, Russian Federation
  • Boreskov Institute of Catalysis, Pr. Akademika Lavrentieva 5, 630090, Novosibirsk, Russian Federation
  • Novosibirsk state university, Str. Pirogova 2, 630090, Novosibirsk, Russian Federation
  • Boreskov Institute of Catalysis, Pr. Akademika Lavrentieva 5, 630090, Novosibirsk, Russian Federation
  • Novosibirsk state university, Str. Pirogova 2, 630090, Novosibirsk, Russian Federation,
  • Boreskov Institute of Catalysis, Pr. Akademika Lavrentieva 5, 630090, Novosibirsk, Russian Federation
  • J. R. Hufton, S. Mayorga, S. Sircar, Sorption-enhanced reaction process for hydrogen production. AIChE J., 1999, 45, 248-256.[Crossref]
  • J.M. Lee, Y.J. Min, K.B. Lee, S.G. Jeon, J.G. Na, H. J. Ryu, Enhancement of CO2 Sorption Uptake on Hydrotalcite by Impregnation with K2CO3. Langmuir, 2010, 26, 18788-18797.[WoS]
  • M.G. Beaver, H.S. Caram, S. Sircar, Sorption enhanced reaction process for direct production of fuel-cell grade hydrogen by low temperature catalytic steam-methanereforming. J. Power Sources, 2009, 195, 1998-2002.[WoS]
  • A. Lopez-Ortiz, N. G. P. Rivera, A. R. Rojas, D. L. Gutierrez,Novel carbon dioxide solid acceptors using sodium containingoxides. Sep. Sci. Technol., 2004, 39, 3559-3572.
  • H. K. Rusten, E. Ochoa-Fernandez, H. Lindborg,D. Chen,H.A. Jakobsen, Hydrogen production by sorption-enhancedsteam methane reforming using lithium oxides as CO2-acceptor. Ind. Eng. Chem. Res., 2007, 46, 8729-8737.[WoS][Crossref]
  • K. Essaki, T. Muramatsu, M. Kato, Effect of equilibrium shift byusing lithium silicate pellets in methane steam reforming. Int.J. Hydrogen Energy, 2008, 33, 4555-4559.[Crossref][WoS]
  • A.R. Brun-Tsekhovoi, A.N. Zadorin, Y.R. Katsobashvili, S.S.Kourdyumov, The Process of Catalytic Steam-Reforming ofHydrocarbons in the Presence of Carbon Dioxide Acceptor.In Hydrogen Energy Progress VII, in: Proceedings of the 7 thWorld Hydrogen Energy Conference, Moscow, U.S.S.R, Sep25-29,1988;Veziroglu, T.N., Protsenko, A.N., Eds.; PergamonPress: New-York, 1988; Vol. 2, p 885.
  • C. Han, D. P. Harrison, Multicycle performance of a singlestepprocess for H2 production. Sep. Sci. Technol., 1997, 32,681-697.[Crossref]
  • D. P. Harrison, Sorption-enhanced hydrogen production: Areview. Ind. Eng. Chem. Res., 2008, 47, 6486-6501.[Crossref]
  • A. I. Lysikov, A. N. Salanov, A. G. Okunev, Change ofCO2 carrying capacity of CaO in isothermal recarbonationdecompositioncycles. Ind. Eng. Chem. Res, 2007, 46, 4633-4638.[WoS][Crossref]
  • J.C. Abanades, G. Grasa, M. Alonso, N. Rodriguez,E. J. Anthony, and l. M. Romeo, | Cost Structure of aPostcombustion CO2 Capture System Using CaO. Environ.Sci. Technol., 2007, 41, 5523-5527.[Crossref][WoS]
  • B. Feng, H. An, and E. Tan, . Screening of CO2 AdsorbingMaterials for Zero Emission Power Generation Systems.Energy Fuels, 2007, 21, 426-434.[WoS][Crossref]
  • N. Paterson, S. Elphick, D.R. Dugwell, R. Kandiyoti,.Calcium-based liquid phase formation in pressurized gasifierenvironments. Energy Fuels, 2001, 15, 894-902.[Crossref]
  • S. Y. Lin, M. Harada, Y. Suzuki, H.Hatano, Continuousexperiment regarding hydrogen production by Coal/CaOreaction with steam [II] solid formation. Fuel, 2006, 85, 1143-1150.[Crossref]
  • S. Dobner, Cyclic calcination and recarbonation of calcined dolomite.Ind. Eng. Chem. Process Des.Dev., 1977, 16, 479 - 486.[Crossref]
  • A. Silaban, M. Narcida, D. P. Harrison, Characteristics of thereversible reaction between CO2[g] and calcined dolomite.Chem. Eng. Commun., 1996, 146, 149-162.
  • J. S. Dennis, A. N. Hayhurst, The Effect of CO2 on the Kineticsand Extent of Calcination of Limestone and Dolomite Particlesin Fluidized Beds. Chem. Eng. Sci., 1987, 42, 2361-2372.[Crossref]
  • Z. S. Li, F. Fang, N. S. Cai, CO2 Capture from Flue GasesUsing Three Ca-Based Sorbents in a Fluidized Bed Reactor.J. Environ. Eng., 2009, 135, 418-425.[WoS]
  • Z. S. Li, N. S. Cai, Y.Y. Huang, Effect of preparationtemperature on cyclic CO2 capture and multiple carbonationcalcinationcycles for a new Ca-based CO2 sorbent. Ind. Eng.Chem. Res., 2006, 45, 1911-1917.[Crossref]
  • V. Manovic, E. J. Anthony, Long-Term Behavior of CaO-BasedPellets Supported by Calcium Aluminate Cements in a LongSeries of CO2 Capture Cycles. Ind. Eng. Chem. Res., 2009,48, 8906-8912.[WoS][Crossref]
  • C. Qin, J. Yin, H. An, W. Liu, and B. Feng, Performance ofExtruded Particles from Calcium Hydroxide and Cement forCO2 Capture. Energy Fuels, 2012, 26, 154–161.[Crossref][WoS]
  • C. Luo, Y. Zheng, N. Ding, Q.L. Wu, G.A. Bian, C. G. Zheng,Development and Performance of CaO/La2O3 Sorbentsduring Calcium Looping Cycles for CO2 Capture. Ind. Eng.Chem. Res., 2010, 49, 11778-11784.[WoS]
  • C. H. Huang, K. P. Chang, C. T. Yu, P. C. Chiang, C. F. Wang,Development of high-temperature CO2 sorbents made ofCaO-based mesoporous silica. Chem. Eng. J., 2010, 161,129-135.
  • S. F. Wu, Y. Q. Zhu, Behavior of CaTiO3/Nano-CaO as a CO2Reactive Adsorbent. Ind. Eng. Chem. Res., 2010, 49, 2701-2706.[Crossref]
  • V. S. Derevschikov, A. I. Lysikov, and A. G. Okunev, High Temperature CaO/Y2O3 Carbon Dioxide Absorbent with Enhanced Stability for Sorption-Enhanced ReformingApplications. Ind. &Eng. Chem. Res., 2011, 50, 12741–12749.[Crossref][WoS]
  • R. Moreno, The role of slip additives in tape-casting technology. Part 1 – Sorbents and Dispersants .Am. Ceram. Soc. Bull., 1992, 10, 1521 – 1531.
  • R. Moreno, The role of slip additives in tape-casting technology. Part 2 - Binders and Plasticizers. Am. Ceram. Soc. Bull., 1992, 11, 1647 – 1657.
  • J. Mouzon, A. Maitre, L. Frisk, N. Lehto, M. Odeґn, Fabrication of transparent yttria by HIP and the glass-encapsulationmethod. J. Eur. Ceram. Soc., 2009, 29, 311–316.[WoS][Crossref]
  • M. Zhao, X. Yang, T. L. Church, and A. T. Harris, Novel CaO−SiO2 Sorbent and Bifunctional Ni/Co−CaO/SiO2 Complex forSelective H2 Synthesis from Cellulose. Environ. Sci. Technol.,2012, 46, 2976−2983.[WoS][Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.