Preferences help
enabled [disable] Abstract
Number of results
2012 | 1 | 11-21
Article title

Steam reforming of methane over Ni-substituted Sr hexaaluminates

Title variants
Languages of publication
Ni-substituted Sr-aluminates Sr1-xNixAl11.2+xNi0.8-xO19-δ (x = 0; 0.2; 0.4; 0.8) obtained by a precipitation method and calcined at 1200°C have been characterized by different physicochemical techniques and their catalytic properties have been tested in steam reformation of methane. It has been shown that substitution of Al3+ and/or Sr2+ by Ni2+ in the aluminate structure results in changes of phase composition, specific surface area, and reducibility of samples. It has been established that the samples are not completely reduced in the temperature range of 30-900°C. The Sr1-xNixAl11.2+xNi0.8-xO19-δ (x = 0; 0.2; 0.4) catalysts are active and stable in the steam reforming of methane at 700oC: residual amount of methane is (1.1±1.0) vol.%, while the Sr1-xNixAl11.2+xNi0.8-xO19-δ (x = 0.8) sample is rapidly deactivated by coking.
Physical description
16 - 4 - 2012
29 - 5 - 2012
9 - 8 - 2012
  • Salhi N., Boulahouache A., Petit C., Kiennemann A., Rabia C., Steam reforming of methane to syngas over NiAl2O4 spinel catalysts, Intern. J. Hydrogen Energy, 2011; 36, 11433 - 11439.
  • Kim H.-W., Kang K.-M., Kwak H.-Y., Kim J. H., Preparation of supported Ni catalysts on various metal oxides with core/shell structures and their tests for the steam reforming of methane, Chem. Eng. J., 2011; 168, 775-783.
  • Urasaki K., Sekine Y., Kawabe S., Kikuchi E., Matsukata M., Catalytic activities and coking resistance of Ni/perovskites in steam reforming of methane, Appl. Catal. A, 2005; 286, 23-29.
  • Rostrup-Nielsen J. R., Bak-Hansen J. H., CO2-Reforming of Methane over Transition Metals, J. Catal., 1993; 144, 38 - 49.
  • Xu Z., Zhen M., Bi Y., Zhen K., Carbon dioxide reforming of methane to synthesis gas over hexaaluminate ANiAl11O19-d (A = Ca, Sr, Ba and La) catalysts, Catal. Lett., 2000; 64, 157-161.
  • Christensen K. O., Chen D., Lødeng R., Holmen A., Effect of supports and Ni crystal size on carbon formation and sintering during steam methane reforming, Appl. Catal. A, 2006; 314, 9-22.
  • Gardner T. H., Shekhawat D., Berry D. A., Smith M. W., Salazar M., Kugler E. L., Effect of nickel hexaaluminate mirror cation on structure-sensitive reactions during n-tetradecane partial oxidation, Appl. Catal. A, 2007; 323, 1-8.[WoS]
  • Groppi G., Cristiani C., Forzatti P., BaFexAl12-xO19 system for high-temperature catalytic combustion, J. Catal., 1997; 168, 95-103.
  • Takehira K., Highly dispersed and stable supported metal catalysts prepared by solid phase crystallization method, Catal. Surveys Japan, 2002; 6, 19-32.
  • Reforming catalysts for ammonia production. Review of foreign literature, State institute of nitric industry, Moscow, 1989.
  • Groppi G., Cristiani C., Forzatti P., Preparation, characterisation and catalytic activity of pure and substituted La-hexaaluminate systems for high temperature catalytic combustion, Appl. Catal. B, 2001; 35, 137-148.
  • Lietti L., Cristiani C., Groppi G., Forzatti P., Preparation, characterization and reactivity of Me-hexaaluminate (Me = Mn, Co, Fe, Ni, Cr) catalysts in the catalytic combustion of NH3-containing gasified biomasses, Catal. Today, 2000; 59, 191-204.
  • Ivanova A. S., Zolotarsky I. A., Bobrova I. I., Smirnov E. I., Kuzmin V. A., Noskov A. S., Parmon V. N., Catalyst and preparation method of syngas of steam reforming of hydrocarbons, RF Patent Nº 2185239, Byull. Izobret., Nº 20 (2002).
  • Price W. J., Analytical atomic-absorption spectroscopy, New York, 1976.
  • Lowell S., Shields J. E., Thomas M. A., Thommes M., Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, Springer, Netherlands, 2006.
  • Scofield J. H., Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV, J. Electron Spectrosc. Relat. Phenom., 1976; 8, 129-137.
  • Shirley D. A., High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold, Phys. Rev. B, 1972; 5, 4709-4714.
  • Wang J., Tian Zh., Xu J., Xu Yu., Xu Zh., Lin L., Preparation of Mn substituted La-hexaaluminate catalysts by using supercritical drying, Catal. Today, 2003; 83, 213-222.
  • Bukhtiyarova M. V., Ivanova A. S., Plyasova L. M., Litvak G. S., Budneva A. A., Paukshtis E. A., Structure and acid-base properties of hexaaluminates, React. Kinet. Catal. Lett., 2008; 93, 375 - 387.[WoS]
  • Scheffer B., Molhoek P., Moulijn J. A., Temperature-programmed reduction of NiO-WO3/Al2O3 hydrodesulfurization catalysts, Appl. Catal., 1989; 46, 11-30.
  • Chu W., Yang W., Lin L., The partial oxidation of methane to syngas over the nickel-modified hexaaluminate catalysts BaNiyAl12-yO19-δ, Appl. Catal. A, 2002; 235, 39-45
  • Roh H.-S., Jun K.-W., Dong W.-S., Baek S.-C., Park S.-E., Methane reforming reactions over stable Ni/q-Al2O3 catalysts, Journal Ind. Eng. Chem., 2002; 8, 464 - 471.
  • Kosova N., Devyatkina E., Slobodyuk A., Kaichev V., Surface chemistry study of LiCoO2 coated with alumina, Solid State Ionics, 2008; 179, 1745-1749
  • Bukhtiyarova M. V., Ivanova A. S., Plyasova L. M., Litvak G. S., Rogov V. A., Kaichev V. V., Slavinskaya E. M., Kuznetsov P. A., Polukhina I. A., Selective catalytic reduction of nitrogen oxide by ammonia on Mn(Fe)-substituted Sr(La) aluminates, Appl. Catal. A, 2009; 357, 193-205.
  • Sosulnikov M. I., Teterin Yu.A., X-ray photoelectron studies of Ca, Sr and Ba and their oxides and carbonates, J. Electron Spectrosc. Relat. Phenom., 1992; 59, 111 - 126.
  • Dupin J.-C., Gonbeau D., Vinatier P., Levasseur A., Systematic XPS studies of metal oxides, hydroxides and peroxides, Phys. Chem. Chem. Phys., 2000; 2, 1319 - 1324.
  • Van der Heide P. A. W., Photoelectron binding energy shifts observed during oxidation of group IIA, IIIA, IVA elemental surfaces, J. Electron Spectrosc. Relat. Phenom., 2006; 151, 79-91.
  • Van Veenendaal M. A., Sawatzky G. A., Nonlocal screning effects in 2p x-ray photoemission spectroscopy core-level line shapes of transition metal compounds, Phys. Rev. Lett., 1993; 70, 2459-2462.
  • McIntyre N. S., Cook M. G., X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper, Anal. Chem., 1975; 47, 2208-2213.
  • Occelli M. L., Psaras D., Suib S. L., Stencel J. M., Metal contaminant effects on the properties of a silica-rich fluid cracking catalyst, Appl. Catal., 1986; 28, 143-160.
  • Carley A. F., Jackson S. D., O'Shea J. N., Roberts M. W., The formation and characterization of Ni3+ - an x-ray photoelectron spectroscopic investigation of potassium-doped Ni(110)-O, Surf. Sci., 1999; 440, L868-L874.
  • Chu Y., Li S., Lin J., Gu J., Yang Y., Partial oxidation of methane to carbon monoxide and hydrogen over NiO/La2O3/g-Al2O3, Appl. Catal. A, 1996; 134, 67 - 80.
  • Machida M., Eguchi K., Arai H., Analytical electron microscope analysis of the formation of BaO·6Al2O3, J. Amer. Cer. Soc., 1988; 71, 1142 - 1147.
  • Xua Z., Zhen M., Bi Y., Zhena K., Catalytic properties of Ni modified hexaaluminates LaNiyAl12-yO19 for CO2 reforming of methane to synthesis gas, Appl. Catal. A, 2000; 198, 267 - 273.
  • Huang T.-J., Huang M.-C., Effect of Ni content on hydrogen production via steam reforming of methane over Ni/GDC catalysts, Chem. Eng. J., 2008; 145, 149 - 153.
  • Roh H.-S., Koo K. Y., Yoon W. L., Combined reforming of methane over co-precipitated Ni-CeO2, Ni-ZrO2 and Ni-Ce0.8Zr0.2O2 catalysts to produce synthesis gas for gas to liquid (GTL) process, Catal. Today, 2009; 146, 71-75.
  • Vedrine J. C., Hollinger G., Duc T. M., Investigation of antigorite and nickel supported catalysts by x-ray photoelectron spectroscopy, J. Phys. Chem., 1978; 82, 1515-1520
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.