PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 35 | 4 | 515-525
Article title

The Influence Of Calcite On The Ash Flow Temperature For Semi-Anthracite Coal From Donbas District

Content
Title variants
Languages of publication
EN
Abstracts
EN
This paper presents the results of research focused on the lowering of ash flow temperature at semianthracite coal from Donbas district by means of additive (calcite) dosing. Ash fusion temperatures were set for two coal samples (A, B) and for five various states (samples of ash without any additives, with 1%, with 3%, with 5% and with 7% of the additive) in total. The macroscopicphotographic method was used for identifying all specific temperatures. Obtained outputs prove that A type coal has a lower value of sphere temperature than B type coal in the whole scope of percentage representation of the additive. The flow temperature dropped in total from 1489 °C to 1280 °C, i.e. by 14% during the test of coal of type A with 7% of the additive; while it was near 10% for coal of type B (from 1450 °C to 1308 °C). Numerical simulations of the process showed that it is not effective to add an additive with a grain size lower than 280 μm by means of wastevapour burners.
Publisher

Year
Volume
35
Issue
4
Pages
515-525
Physical description
Dates
published
1 - 12 - 2014
online
17 - 12 - 2014
revised
21 - 10 - 2014
accepted
27 - 10 - 2014
received
4 - 2 - 2014
Contributors
  • Technical University of Košice, Faculty of Mechanical Engineering, Department of Power Engineering, Vysokoškolská 4, 042 00 Košice, Slovakia, maria.carnogurska@tuke.sk
  • VŠB - Technical University of Ostrava, Faculty of Metallurgy and Materials Engineering, 17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic
author
  • VŠB - Technical University of Ostrava, Faculty of Metallurgy and Materials Engineering, 17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic
  • Technical University of Košice, Faculty of Mechanical Engineering, Department of Power Engineering, Vysokoškolská 4, 042 00 Košice, Slovakia
author
  • Slovenské elektrárne, subsidiary of the Enel Group, Thermal Power Plant Vojany, 076 72 Vojany, Slovakia
References
  • Ahn J., Kim H.J., Choi K.S., 2010. Oxy-fuel combustion boiler for CO2 capturing: 50 kW class model test and numerical simulation. J. Mech. Sci. Technol., 24, 10, 2135-2141. DOI 10.1007/s12206-010-0711-y.[WoS][Crossref]
  • Čarnogurská M., Příhoda M., Koško M., Pyszko R., 2012. Verification of pollutant creation model at dendromass combustion. J. Mech. Sci. Technol., 26, 9, 4161-4169. DOI: 10.1007/s12206-011-0913-y.[Crossref]
  • Huggins F.E., Kosmack D.A., Huffman G.P., 1981. Correlation between ash-fusion temperatures and ternary equilibrium phase diagrams. Fuel, 60, 577-584. DOI: 10.1016/0016-2361(81)90157-5.[Crossref]
  • Kong L.X., Bai J., Li W., Bai Z.Q., Gou Z.X., 2011. Effect of lime addition on slag fluidity of coal ash. J. Mech. Sci. Technol., 39, 6, 407-411. DOI: 10.1016/S1872-5813(11) 60028-5.[Crossref]
  • Li J.B., Shen B.X., Li H.X., Zhao J.G., Wang J.M., 2009. Effect of ferrum-based flux on the melting characteristics of coal ash from coal blends using the Liu-qiao No.2 Coal Mine in Wan-bei. J. Fuel Chem. Technol., 37, 262-265. DOI: 10.1016/S1872-5813(09)60020-7.[Crossref]
  • Li J., Du M.F., Yan B., Zhang Z.X., 2008. Quantum and experimental study on coal ash fusion with borax fluxing agent. J. Fuel Chem. Technol., 36, 519-523. DOI: 10.1016/S1872-5813(08)60032-8.[Crossref]
  • Lloyd W.G., Riley J., Zhou T.S., Risen M.A., Tibbitts R.L., 1993. Ash fusion temperatures under oxidizing conditions. Energy Fuels, 7, 490-494. DOI: 10.1021/ef00040a009.[Crossref]
  • Lolja S.A., Haxhia H., Dhimitria R., Drushkua S., Malja A., 2002. Correlation between ash fusion temperatures and chemical composition in Albanian coal ashes. Fuel, 81, 2257-2261. DOI: 10.1016/S0016-2361(02)00194-1.[Crossref]
  • Moroń W., Czajka K., Ferens W., Babul K., Szydełko A., Rybak W., 2013. NOx and SO2 emission during OXYcoal combustion. Chem. Process Eng., 34, 3, 337-346. DOI: 10.2478/cpe-2013-0027.[WoS]
  • Sambor A., Szymanek A., 2012. Investigation of the distribution of chemical components in selected landfill layers and fly ash fractions. Chem. Process Eng., 33, 2, 221-229. DOI: 10.2478/v10176-012-0019-9.[WoS][Crossref]
  • Seggiani M., 1999. Empirical correlations of the ash fusion temperatures and temperature of critical viscosity for coal and biomass ashes. Fuel, 78, 1121-1125. DOI: 10.1016/S0016-2361(99)00031-9.[Crossref]
  • Thompson D., Argent B.B., 1999. Coal ash composition as a function of feedstock composition. Fuel, 78, 539-548. DOI: 10.1016/S0016-2361(98)00180-X.[Crossref]
  • Wall T.F., Creelman R.A., Gupta R.P., Gupta S.K., Coin C., Lowe A., 1998. Coal ash fusion temperatures - New characterization techniques, and implications for slagging and fouling. Prog. Energy Combust. Sci., 24, 345-353. DOI: 10.1016/S0360-1285(98)00010-0.[Crossref]
  • Wang W., Luo Z., Shi Z., Cen K., 2011. Experiments and modelling of ash mineral evolution in burning highsulphur coal with lime. Energy Fuels, 25, 130-135. DOI: 10.1021/ef1014346.[Crossref]
  • Wen J.S., Li H.T., Xue Z.D., Yong Q.W., Zi B.Z, Koyama S., 2010. Effect of coal ash composition on ash fusion temperatures. Energy Fuels, 24, 182-189. DOI: 10.1021/ef900537m.[Crossref]
  • Wen J.S., Li H.T., Xue Z.D., Yong Q.W., Zi B.Z., Koyama S., 2009. Prediction of Chinese coal ash fusion temperatures in Ar and H2 atmospheres. Energy Fuels, 23, 4, 1990-1997. DOI: 10.1021/ef800974d. [WoS][Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_cpe-2014-0038
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.