Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2014 | 35 | 4 | 497-514

Article title

The Analysis of Pipeline Transportation Process for CO2 Captured From Reference Coal-Fired 900 MW Power Plant to Sequestration Region


Title variants

Languages of publication



Three commercially available intercooled compression strategies for compressing CO2 were studied. All of the compression concepts required a final delivery pressure of 153 bar at the inlet to the pipeline. Then, simulations were used to determine the maximum safe pipeline distance to subsequent booster stations as a function of inlet pressure, environmental temperature, thickness of the thermal insulation and ground level heat flux conditions. The results show that subcooled liquid transport increases energy efficiency and minimises the cost of CO2 transport over long distances under heat transfer conditions. The study also found that the thermal insulation layer should not be laid on the external surface of the pipe in atmospheric conditions in Poland. The most important problems from the environmental protection point of view are rigorous and robust hazard identification which indirectly affects CO2 transportation. This paper analyses ways of reducing transport risk by means of safety valves.









Physical description


1 - 12 - 2014
16 - 10 - 2014
17 - 10 - 2014
17 - 12 - 2014
4 - 4 - 2014


  • Silesian University of Technology, Instiute of Power Engineering and Turbomachinery, Konarskiego 18, 44-100 Gliwice, Poland
  • Silesian University of Technology, Instiute of Power Engineering and Turbomachinery, Konarskiego 18, 44-100 Gliwice, Poland
  • Silesian University of Technology, Instiute of Power Engineering and Turbomachinery, Konarskiego 18, 44-100 Gliwice, Poland
  • Silesian University of Technology, Instiute of Power Engineering and Turbomachinery, Konarskiego 18, 44-100 Gliwice, Poland


  • Antoniades C., Christofides P.D., 2001. Studies on nonlinear dynamics and control of a tubular reactor with recycle. Nonlinear Analysis - Theory Methods and Applications, 47, 5933-5944. PII: S0362-546X(01)00699-X.
  • Aspen Plus, Version 7.0, 2008, User Guide.
  • Botero C., Finkenrath M., Belloni C., Bertolo S., D’Ercole M., Gori E., Tacconelli R., 2009. Thermoeconomic evaluation of CO2 compression strategies for post-combustion CO2 capture application. Proc. ASME Turbo Expo 2009: Power for Land, Sea, and Air, 517-526. DOI: 10.1115/GT2009-60217.[Crossref]
  • Bovon P.R., Habel R., 2007. CO2 compression challangers. ASME Turbo Expo. Montreal. 15 May 2007.
  • Det Norske Veritas, 2010. Design and operation of CO2 pipelines. Recommended practice, DNV-RP-J202. DNV, Veritasveien, Høvik, Norway.
  • Incropera F.P., DeWitt D.P., 1996. Introduction to heat transfer. 3rd edition, John Wiley & Sons, Inc., New York.
  • Koopman A.A., Bahr D.A., 2010. The impact of CO2 compressor characteristics and integration in postcombustion carbon sequestration. Comparative economic analysis. Proc. ASME Turbo Expo 2010: Power for Land, Sea, and Air. Glasgow, UK, 14-18 June 2010, 601-608. DOI: 10.1115/GT2010-22974.[Crossref]
  • Koornneef J., Spruijt M., Molag M., Ramirez A., Turkenburg W., Faaij, A., 2010. Quantitative risk assessment of CO2 transport by pipelines - A review of uncertainties and their impacts. J. Hazard. Mater., 177, 12-27. DOI: 10.1016/j.jhazmat.2009.11.068.[WoS][Crossref]
  • Lüdtke H., 2004. Process Centrifugal Compressors. Springer Berlin Heidelberg. DOI: 10.1007/978-3-662-09449-5.[Crossref]
  • Łukowicz H., Dykas S., Rulik S., Stępczyńska K., 2010. Thermodynamic and economic analysis of a 900 MW ultra-supercritical power unit. Arch. Thermodyn., 32, 231-244. DOI: 10.2478/v10173-011-0025-1.[Crossref]
  • McCoy S.T., Rubin E. S., 2008. An engineering-economic model of pipeline transport of CO2 with application to carbon capture and storage. Int. J. Greenhouse Gas Control, 2, 219-229. DOI: 10.1016/S1750-5836(07)00119-3.[Crossref]
  • McGillivray A., Wilday J., 2009. Comparison of risks from carbon dioxide and natural gas pipelines, HSE report rr749, available at: www.hse.gov.uk/research/rrpdf/rr749.pdf.
  • Mohitpour M., Seevam P., Botros K.K., Rothwell B., Ennis C., 2012. Pipeline transportation of carbon dioxide containing impurities. ASME Press, New York.
  • Moore J.J., Nored M.G., 2008. Novel concepts for the compression of large volumes of carbon dioxide, Proc. ASME Turbo Expo 2008: Power for Land, Sea, and Air. Berlin, Germany, 9-13 June 2008, 645-653. DOI: 10.1115/GT2008-50924.[Crossref]
  • PHAST v.6.7, DNV Software, 2010.
  • Wolk R.H., 2009. Proceedings of the workshop on future large CO2 compression systems. Gaithersburg, 30-31 March 2009, available at: http://www.nist.gov/pml/high_megawatt/upload/March-2009-CO2-Workshop-Proceedings.pdf.
  • Witkowski A., Rusin A., Majkut M., Rulik S., Stolecka K., 2013. Comprehensive analyses of the pipeline transportation systems for CO2 sequestration. Thermodynamics and safety problems. Energy Convers. Manage., 76, 665-673. DOI: 10.1016/j.enconman.2013.07.087.[WoS][Crossref]
  • Witlox H.W.M., Harper M., Oke A., 2009. Modelling of discharge and atmospheric dispersion for carbon dioxide releases. J. Loss Prev. Process Ind., 22, 95-802. DOI: 10.1016/j.egypro.2011.02.114.[WoS][Crossref]
  • Zhang D., Wang Z., Sun J., Zhang L., Zheng L., 2012. Economic evaluation of CO2 pipeline transport in China. Energy Convers. Manage., 55, 127-135. DOI: 10.1016/j.enconman.2011.10.022.[WoS][Crossref]
  • Zhang Z.X., Wang G.X. Massarotto, P., Rudolph V., 2006. Optimization of pipeline transport for CO2 sequestration. Energy Convers. Manage., 47, 702-715. DOI: 10.1016/j.enconman.2005.06.001. [Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.