Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 35 | 4 | 463-487

Article title

Liquid Perfluorochemicals as Flexible and Efficient Gas Carriers Applied in Bioprocess Engineering: An Updated Overview and Future Prospects

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
Fully synthetic, biochemically inert and water-immiscible liquid perfluorochemicals (PFCs) are recognised as flexible liquid carriers/scavengers of gaseous compounds (respiratory gases mainly, i.e. O2 and CO2) and increasingly applied in bioprocess engineering. A range of unmatched physicochemical properties of liquid PFCs, i.e. outstanding chemo- and thermostability, extremely low surface tension, simultaneous hydro- and lipophobicity, which result from carbon chain substitution with fluorine atoms (the most electronegative chemical element) and the presence of intramolecular C-F bonds (the strongest single bond known in organic chemistry) have been described in detail. Exceptional propensity to solubility of respiratory gases in liquid perfluorinated compounds has been widely discussed. Advantages and disadvantages of bioprocess applications of liquid PFCs in the form of a pure PFC as well as in an emulsified form have been pointed out. A liquid PFC-mediated mass transfer intensification in various types of microbial, plant cell and animal cell culture systems: from miniaturised microlitre-scale cultures, via biomaterial-based scaffolds containing culture systems, to litre-scale bioreactors, has been reviewed and elaborated on bearing in mind the benefits of bioprocesses.

Publisher

Year

Volume

35

Issue

4

Pages

463-487

Physical description

Dates

published
1 - 12 - 2014
online
17 - 12 - 2014
received
21 - 8 - 2014
revised
7 - 10 - 2014
accepted
8 - 10 - 2014

Contributors

  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland

References

  • Adlercreutz P., Mattiasson B., 1982. Oxygen supply to immobilized cells. Eur. J. Appl. Microbiol. Biotechnol., 16, 165-170. DOI: 10.1007/BF00505826.[Crossref]
  • Anthony P., Davey M.R., Power J.B., Washington C., Lowe K.C., 1994. Synergistic enhancement of protoplast growth by oxygenated perfluorocarbon and Pluronic F-68. Plant Cell Rep., 13, 251-255. DOI: 10.1007/BF00233314.[Crossref][PubMed]
  • Audonnet-Blaise S., Krafft M. P., Smani Y., Mertes P.M., Marie P.Y., Labrude P., Longrois D., Menu P., 2006. Resuscitation of severe but brief haemorrhagic shock with PFC in rabbits restores skeletal muscle oxygen delivery and does not alter skeletal muscle metabolism. Resuscitation, 70, 124-132. DOI: 10.1016/j.resuscitation.2005.11.014.[Crossref]
  • Bakulin M.K., Grudtsyna A.S., Pletneva A.Y., 2007. Biological fixation of nitrogen and growth of bacteria of the genus Azotobacter in liquid media in the presence of perfluorocarbons. Appl. Biochem. Microbiol., 43, 399-402. DOI: 10.1134/S0003683807040072.[Crossref]
  • Bałdyga J., Pohorecki R., 1998. Influence of turbulent mechanical stresses on microorganisms. Appl. Mech. Rev., 51, 121-140. DOI: 10.1115/1.3098987.[Crossref]
  • Bezinover D., Ramamoorthy S., Postula M., Weller G., Mahmoud S., Mani H., Kadry Z., Uemura T., Mets B., Spiess B., Brucklacher R., Freeman W., Janicki P.K., 2014. Effect of cold perfusion and perfluorocarbons on liver graft ischemia in a donation after cardiac death model. J. Surg. Res., 188, 517-526. DOI: 10.1016/j.jss.2014.01.045.[Crossref]
  • Bouchemal K., Briançon S., Perrier E., Fessi H., 2004. Nano-emulsion formulation using spontaneous emulsification: Solvent, oil and surfactant optimisation. Int. J. Pharm., 280, 241-251. DOI: 10.1016/j.ijpharm.2004.05.016.[PubMed][Crossref]
  • Brzezińska M., Grabowska I., Dąbkowska K., Pilarek M., 2012. Układ typu ciecz/ciecz jako alternatywna metoda hodowli przestrzennej komórek adherentnych. Inż. Ap. Chem., 51, 101-102.
  • Bucci E., 2009. Thermodynamic approach to oxygen delivery in vivo by natural and artificial oxygen carriers. Biophysical Chem., 142, 1-6. DOI: 10.1016/j.bpc.20 08.12.0 09.[Crossref]
  • Cabrales P., Intaglietta M., 2013. Blood substitutes: evolution from noncarrying to oxygen- and gas-carrying fluids. ASAIO J., 59, 337-54. DOI: 10.1097/MAT.0b013e318291fbaa.[PubMed][Crossref]
  • Castro C.I., Briceno J.C., 2010. Perfluorocarbon-based oxygen carriers: review of products and trials. Artif. Organs., 34, 622-34. DOI: 10.1111/j.1525-1594.2009.00944.x.[Crossref][PubMed]
  • Centis V., Vermette P., 2009. Enhancing oxygen solubility using hemoglobin- and perfluorocarbon-based carriers. Front. Biosci., 14, 665-88. DOI: 10.2741/3272.[Crossref]
  • Cesário M.T., Turtoi M., Sewalt S.F.M., Beeftink H.H., Tramper J., 1996. Enhancement of the gas-to-water ethene transfer coefficient by a dispersed water-immiscible solvent: Effect of the cells. Appl. Microbiol. Biotechnol., 46: 497-502. DOI: 10.1007/s002530050850.[Crossref]
  • Chen Z., Yan F., Qiu L., Lu J., Zhou Y., Chen J., Tang Y., Texter J., 2010. Sustainable polymerizations in recoverable microemulsions. Langmuir, 26, 3803-3806. DOI: 10.1021/la100502x.[PubMed][Crossref]
  • Cho M.H., Wang S.S., 1988. Enhancement of oxygen transfer in hybridoma cell culture by using a perfluorocarbon as an oxygen carrier. Biotechnol. Lett., 10, 855-860. DOI: 10.1007/BF01026995.[Crossref]
  • Costa Gomes M.F., Deschamps J., Menz D.H., 2004. Solubility of dioxygen in seven fluorinated liquids. J. Fluor. Chem., 125, 1325-1329. DOI: 10.1016/j.fluchem.2004.03.013.[Crossref]
  • Courrier H.M., Pons F., Lessinger J.M., Frossard N., Krafft M.P., Vandamme T.F., 2004. In vivo evaluation of a reverse water-in-fluorocarbon emulsion stabilized with a semifluorinated amphiphile as a drug delivery system through the pulmonary route. Int. J. Pharm., 282, 131-40. DOI: 10.1016/j.ijpharm.2004.06.011.[Crossref]
  • Davey M.R., Anthony P., Power J.B., Lowe K.C., 2003. Applications and benefits of a non-ionic surfactant and artificial oxygen carriers for enhancing post-thaw recovery of plant cells from cryopreservation. Adv. Exp. Med. Biol., 540, 139-146. DOI: 10.1007/978-1-4757-6125-2_20.[Crossref]
  • Davey M.R., Anthony P., Power J.B., Lowe K.C., 2005. Plant protoplast technology: current status. Acta Physiol. Plant., 27, 117-129. DOI: 10.1007/s11738-005-0044-0.[Crossref]
  • Deschamps J., Menz D.H., Padua A.A.H., Costa Gomes M.F., 2007. Low pressure solubility and thermodynamics of solvation of oxygen, carbon dioxide, and carbon monoxide in fluorinated liquids. J. Chem. Thermodyn., 39, 847-854. DOI: 10.1016/j.jct.2006.11.012.[Crossref]
  • Dias A.M.A., Freire M., Coutinho J.A.P., Marrucho I.M., 2004. Solubility of oxygen in liquid perfluorocarbons. Fluid Phase Equilibr., 222-223, 325-330. DOI: 10.1016/j.fluid.2004.06.037.[Crossref]
  • Douglas T.E.L., Pilarek M., Kalaszczyńska I., Senderek I., Skwarczyńska A., Cuijpers V.M.J.I., Modrzejewska Z., Lewandowska-Szumieł M., Dubruel P., 2014. Enrichment of chitosan hydrogels with per fluorodecalin promotes gelation and stem cell vitality. Mater. Lett., 128, 79-84. DOI: 10.1016/j.matlet.2014.03.173.[Crossref]
  • Dumont E., Andrès Y., Le Cloirec P., 2006. Effect of organic solvents on oxygen mass transfer in multiphase systems: Application to bioreactors in environmental protection. Biochem. Eng. J., 30, 245-252. DOI: 10.1016/j.bej.2006.05.003.[Crossref]
  • Eaton D.F., Smart B.E., 1990. Are fluorocarbon chains "stiffer" than hydrocarbon chains? Dynamics of end-toend cyclization in a C8F16 segment monitored by fluorescence. J. Am. Chem. Soc., 112, 2821-2823. DOI: 10.1021/ja00163a065.[Crossref]
  • Elibol M., 1999. Mass transfer characteristics of yeast fermentation broth in the presence of pluronic F-68. Process Biochem., 34, 557-561. DOI: 10.1016/S0032-9592(98)00126-5.[Crossref]
  • Elibol M., 2001. Improvement of antibiotic production by increased oxygen solubility through the addition of perfluorodecalin. J. Chem. Technol. Biotechnol., 76, 418-422. DOI: 10.1002/jctb.389.[Crossref]
  • Elliott S., 2011. Erythropoiesis-stimulating agents and other methods to enhance oxygen transport. Br. J. Pharmacol., 154, 529-541. DOI: 10.1038/bjp.2008.89.[Crossref]
  • Enfors S.O., Jahic M., Rozkov A., Xu B., Hecker M., Jürgen B., Krüger E., Schweder T., Hamer G., O'Beirne D., Noisommit-Rizzi N., Reuss M., Boone L., Hewitt C., McFarlane C., Nienow A., Kovacs T., Trägårdh C., Fuchs L., Revstedt J., Friberg P. C., Hjertager B., Blomsten G., Skogman H., Hjort S., Hoeks F., Lin H. Y., Neubauer P., van der Lans R., Luyben K., Vrabel P., Manelius Å., 2001. Physiological responses to mixing in large scale bioreactors. J. Biotechnol., 85, 175-185. DOI: 10.1016/S0168-1656(00)00365-5.[Crossref]
  • EU Patent 0164813. 18.12.1985. Method of cultivating animal or plant cells.
  • EU Patent 2402433. 04.01.2012. Method for increasing the expression of a recombinant protein and plasmid yield in an eukaryotic or prokaryotic high cell density culture.
  • Galaction A. I., Cascaval D., Oniscu C., Turnea M., 2004. Prediction of oxygen mass transfer coefficients in stirred bioreactors for bacteria, yeasts and fungus broths. Biochem. Eng. J., 20, 85-94. DOI: 10.1016/j.bej.2004.02.005.[Crossref]
  • Garcia-Ochoa F., Gomez E., Alcon A., Santos V.E., 2013. The effect of hydrodynamic stress on the growth of Xanthomonas campestris cultures in a stirred and sparged tank bioreactor. Bioprocess Biosyst. Eng., 36, 911-925. DOI: 10.1007/s00449-012-0825-y.[Crossref]
  • Garcia-Ochoa F., Gomez E., Santos V.E., Merchuk J.C., 2010. Oxygen uptake rate in microbial processes: An overview. Biochem. Eng. J., 49, 289-307. DOI: 10.1016/j.bej.2010.01.011.[Crossref]
  • Gardeazabal T., Cabrera M., Cabrales P., Intaglietta M., Briceno J.C., 2008. Oxygen transport during hemodilution with a perfluorocarbon-based oxygen carrier: effect of altitude and hyperoxia. J. Appl. Physiol., 105, 588-594. DOI: 10.1152/japplphysiol.00152.2008.[Crossref]
  • Glazyrina J., Krause M., Junne S., Glauche F., Strom D., Neubauer P., 2012. Glucose-limited high cell density cultivations from small to pilot plant scale using an enzyme-controlled glucose delivery system. N. Biotechnol., 29, 235-242. DOI: 10.1016/j.nbt.2011.11.00.[Crossref]
  • Gomes L., Gomes E.R., 2007. Perfluorocarbons compounds used as oxygen carriers: from liquid ventilation to blood substitutes. Revista da Faculdade de Ciencias da Saude (University Fernando Pessoa, Portugal), 4, 58-65.
  • Gogate P.R., Beenackers A.A.C.M., Pandit A.B., 2000. Multiple-impeller systems with a special emphasis on bioreactors: A critical review. Biochem. Eng. J., 6, 109-144. DOI: 10.1016/S1369-703X(00)00081-4.[Crossref][PubMed]
  • Gotoh T., Michizuki G., Kikuchi K.-I., 2001a. Perfluorocarbon-mediated aeration applied to recombinant protein production by virus-infected insect cells. Biochem. Eng. J., 7, 69-78. DOI: 10.1016/S1369-703X(00)00103-0.[PubMed][Crossref]
  • Gotoh T., Michizuki G., Kikuchi K.-I., 2001b. A novel column fermentor having a wetted-wall of perfluorocarbon as an oxygen carrier. Biochem. Eng. J., 8, 165-169. DOI: 10.1016/S1369-703X(01)00110-3.[Crossref]
  • Gruen D.W.R., 1985. A model for the chains in amphiphilic aggregates. 2. Thermodynamic and experimental comparisons for aggregates of different shape and size. J. Phys. Chem., 89, 153-163. DOI: 10.1021/j100247a033.[Crossref]
  • Grunzel P., Pilarek M., Steinbrück D., Neubauer A., Brand E., Kumke M.U., Neubauer P., Krause M., 2014. Mini-scale cultivation method enables expeditious plasmid production in Escherichia coli. Biotechnol. J., 9, 128-136. DOI: 10.1002/biot.201300177.[Crossref]
  • Hamamoto K., Tokashiki M., Ichikawa Y., Murakami H., 1987. High cell density culture of a hybridoma using perfluorocarbon to supply oxygen. Agric. Biol. Chem., 51, 3415-3416. DOI: 10.1271/bbb1961.51.3415.[Crossref]
  • Han B., Su T., Wu H., Gou Z., Xing X.-H., Jiang H., Chen Y., Li X., Murrell J.C., 2009. Paraffin oil as a "methane vector" for rapid and high cell density cultivation of Methylosinus trichosporium OB3b. Appl. Microbiol. Biotechnol., 83, 669-677. DOI: 10.1007/s00253-009-1866-2.[Crossref]
  • Hill S.E., Leone B.J., Faithfull N.S., Flaim K.E., Keipert P.E., Newman M.F., 2002. Perflubron emulsion (AF0144) augments harvesting of autologous blood: a phase II study in cardiac surgery. J. Cardiothorac. Vasc. Anesth., 16, 555-560. DOI: 10.1053/jcan.2002.126947.[Crossref]
  • Hillig F., Annemüller S., Chmielewska M., Pilarek M., Junne S., Neubauer P., 2013. Bioprocess development in single-use systems for heterotrophic marine microalgae. Chem. Ing. Tech., 85, 153-161. DOI: 10.1002/cite.201200143.[Crossref]
  • Hillig F., Pilarek M., Junne S., Neubauer P., 2014. Cultivation of marine microorganisms in single-use systems. Adv. Biochem. Eng. Biotechnol., 138, 179-206. DOI: 10.1007/10_2013_219.[Crossref]
  • Hondred P.R., Yoon S., Bowler N., Kessler M.R., 2013. Degradation kinetics of polytetrafluoroethylene and poly(ethylene-alt-tetrafluoroethylene). High Perform. Polym., 25, 535-542. DOI: 10.1177/0954008312473491.[Crossref]
  • Jewitt N., Anthony P., Lowe K.C., de Pomerai D.I., 1999. Oxygenated perfluorocarbon promotes nematode growth and stress-sensitivity in a two-phase liquid culture system. Enz. Microb. Technol., 25, 349-356. DOI: 10.1016/S0141-0229(99)00052-6.[Crossref]
  • Ju L.K., Lee J.F., Armiger W.B., 1991. Enhancing oxygen transfer in bioreactors by perfluorocarbon emulsions. Biotechnol. Prog., 7, 323-329. DOI: 10.1021/bp00010a006.[Crossref]
  • Kaisers U., Kelly K.P., Busch T., 2003. Liquid ventilation. Br. J. Anaesth., 91, 143-151. DOI: 10.1093/bja/aeg147.[PubMed][Crossref]
  • Kaufman R.J., 1992. Perfluorochemical emulsions as blood substitutes, In: Sjöblom J. (Eds.), Emulsions - A fundamental and practical approach NATO ASI series. Springer Netherlands, 207-226. DOI: 10.1007/978-94-011-2460-7_14.[Crossref]
  • Kaufmann B.A., Lindner J.R., 2007. Molecular imaging with targeted contrast ultrasound. Curr. Opin. Biotechnol., 18, 11-16. DOI: 10.1016/j.copbio.2007.01.004.[Crossref][PubMed]
  • Kim H.W., 2007. Engineering blood cells and proteins as blood substitutes: a short review. Biotechnol. Bioproc. Eng., 12, 43-47. DOI: 10.1007/BF02931802.[Crossref]
  • Kirsch P., 2004. Modern fluoroorganic chemistry. Synthesis, reactivity, applications. Wiley-VCH Verlag, Weinheim.
  • Kołtuniewicz A.B., 2014. Sustainable process engineering. De Gruyter, Berlin, 354-356.
  • Kraft M.P., Riess J.G., 1998. Highly fluorinated amphiphiles and colloidal systems, and their applications in the biomedical field. A contribution. Biochimie, 80, 489-514. DOI: 10.1016/S0300-9084(00)80016-4.[Crossref]
  • Krafft M.P., Chittofrati A., Riess J.G., 2003. Emulsions and microemulsions with fluorocarbon phase. Curr. Opin. Colloid Interface. Sci., 8, 251-258. DOI: 10.1016/S1359-0294(03)00045-1.[Crossref]
  • Krafft M.P., Riess J.G., 2007. Perfluorocarbons: life sciences and biomedical uses. J. Polym. Sci. Part A: Polym. Chem., 45, 1185-1198. DOI: 10.1002/pola.21937.[Crossref]
  • Kuznetsova I.N., 2003. Perfluorocarbon emulsions: stability in vitro and in vivo (a review). Pharm. Chem. J., 37, 415-420. DOI: 10.1023/A:1027355913348.[Crossref]
  • Lai Z.-W., Rahim R.A., Ariff A.B., Mohamad R., 2012. Biosynthesis of high molecular weight hyaluronic acid by Streptococcus zooepidemicus using oxygen vector and optimum impeller tip speed. J. Biosci. Bioeng., 114, 286-291. DOI: 10.1016/j.jbiosc.2012.04.011.[Crossref]
  • Lamy M., Deby-Dupont G., 2009. Current status of oxygen carriers. Sartoniana, 22, 113-130.
  • Lanza G. M., Wickline S. A., 2001. Targeted ultrasonic contrast agents for molecular imaging and therapy. Progr. Cardiovasc. Dis., 44, 13-31. DOI: 10.1053/pcad.2001.26440.[Crossref]
  • Lee Y.H., Yeh Y.L., Lin K.H., Hsu Y.C., 2013. Using fluorochemical as oxygen carrier to enhance the growth of marine microalga Nannochloropsis oculata. Bioprocess Biosyst. Eng., 36, 1071-1078. DOI: 10.1007/s00449-012-0860-8.[Crossref]
  • Lewandowski G., Meissner E., Milchert E., 2006. Special applications of fluorinated organic compounds. J. Hazard. Mater., 136, 385-391. DOI: 10.1016/j.jhazmat.2006.04.017.[Crossref]
  • Li M., Meng X., Diao E., Du F., Zhao X., 2012. Productivity enhancement of S-adenosylmethionine in Saccharomyces cerevisiae using n-hexadecane as oxygen vector. J. Chem. Technol. Biotechnol., 87, 1379-1384. DOI: 10.1002/jctb.3752.[Crossref]
  • Li H., Wijekoon A., Leipzig N.D., 2014. Ecapsulated neural differentiation in fluorinated methacrylamide chitosan hydrogels. Ann. Biomed. Eng., 42, 1456-1469. DOI: 10.1007/s10439-013-0925-0.[Crossref][PubMed]
  • Lowe K.C., 1999. Perfluorinated blood substitutes and artificial oxygen carriers. Blood Rev., 171-184. DOI: 10.1054/blre.1999.0113.[PubMed][Crossref]
  • Lowe K.C., 2001. Fluorinated blood substitutes and oxygen carriers. J. Fluor. Chem., 109, 59-65. DOI: 10.1016/S0022-1139(01)00374-8.[Crossref]
  • Lowe K.C., 2002. Perfluorochemical respiratory gas carriers: Benefits to cell culture systems. J. Fluor. Chem., 118, 19-26. DOI: 10.1016/S0022-1139(02)00200-2.[Crossref]
  • Lowe K.C., Anthony P., Power J.B., Davey M.R., 2003. Novel approaches for regulating gas supply to plant systems in vitro: Application and benefits of artificial gas carriers. In Vitro Cell. Dev. Biol. Plant, 39, 557-566. DOI: 10.1079/IVP2003469.[Crossref]
  • Lowe K.C., Anthony P., Davey M.R., Power J.B., 2001. Beneficial effects of Pluronic F-68 and artificial oxygen carriers on the post-thaw recovery of cryopreserved plant cells. In Vitro Cell. Dev. Biol. Anim., 29, 297-316. DOI: 10.1081/BIO-100104232.[Crossref]
  • Maillard E., Sanchez-Dominguez M., Kleiss C., Langlois A., Sencier M.C., Vodouhe C., Beitigier W., Krafft M.P., Pinget M., Belcourt A., Sigrist S., 2008. Perfluorocarbons: new tool for islets preservation in vitro. Transplant. Proc., 40, 372-374. DOI: 10.1016/j.transproceed.2008.01.006.[PubMed][Crossref]
  • Martin K.H., Dayton P.A., 2013. Current status and prospects for microbubbles in ultrasound theranostics. Wiley Interdiscip Rev Nanomed Nanobiotechnol., 5, 329-45. DOI: 10.1002/wnan.1219.[Crossref][PubMed]
  • Martin M., Montes F.J., Galan M.A., 2010. Mass transfer rates from bubbles in stirred tanks operating with viscous fluids. Chem. Eng. Sci., 65, 3814-3824. DOI: 10.1016/j.ces.2010.03.015.[Crossref]
  • Martin S., Soucaille P., Condoret J.-S., 1995. Bubble free gaseous transfer in bioreactors using perfluorocarbons. Bioprocess Eng., 13, 293-300. DOI: 10.1007/BF00369560.[Crossref]
  • Martin Y., Vermette P., 2005. Bioreactors for tissue mass culture: design, characterization and recent advances. Biomaterials, 26, 7481-7503. DOI: 10.1016/j.biomaterials.2005.05.057.[Crossref][PubMed]
  • Maevsky E., Ivanitsky G., 2005. Oxygen-dependent and oxygen-independent effects of Perftoran, In: Kobayashi K., Tsuchida E., Horinouchi H. (Eds.), Artificial Oxygen Carrier. Its Front Line. Springer Verlag, Tokyo, 221-228. DOI: 10.1007/4-431-26651-8_17.[Crossref]
  • Maevsky E., Ivanitsky G., Bogdanova L., Axenova O., Karmen N., Zhiburt E., Senina R., Pushkin S., Maslennikov I., Orlov A., Marinicheva I., 2005. Clinical results of Perftoran application: present and future. Artif. Cells Blood Substit. Immobil. Biotechnol., 33, 37-46. DOI: 10.1081/BIO-200046654.[Crossref]
  • Menge M., Mukherjee J., Scheper T., 2001. Application of oxygen vectors to Claviceps purpurea cultivation. Appl. Microbiol. Biotechnol., 55, 411-416. DOI: 10.1007/s002530100592.[Crossref][PubMed]
  • Mitsuno T., Ohyanagi H., Naito R., 1982. Clinical studies of a perfluorochemical whole blood substitute (Fluosol- DA) Summary of 186 cases. Ann. Surg., 195, 60-69.
  • Neubauer P., Junne S., 2010. Scale-down simulators for metabolic analysis of large-scale bioprocesses. Curr. Opin. Biotechnol., 21, 114-121. DOI: 10.1016/j.copbio.2010.02.001.[PubMed][Crossref]
  • Ntwampe S.K.O., Williams C.C., Sheldon M.S., 2010. Water-immiscible dissolved oxygen carriers in combination with Pluronic F 68 in bioreactors. Afr. J. Biotechnol., 9, 1106-1114.
  • Percheron G., Brechignac F., Soucaille P., Condoret J.-S., 1995. Carbon dioxide desorption from fermentation broth by use of oxygen vectors. Bioprocess Eng., 12, 11-16. DOI: 10.1007/BF01112987.[Crossref]
  • Pilarek M., Szewczyk K.W., 2005. Zastosowania perfluorozwiązków jako ciekłych nośników gazów oddechowych w medycynie i biotechnologii. Biotechnologia, 69, 125-150.
  • Pilarek M., Szewczyk K.W., 2007. Application of a liquid oxygen carrier in plant cell suspension cultures. J. Biotechnol., 131, Supplement, S143. DOI: 10.1016/j.jbiotec.2007.07.850.[Crossref]
  • Pilarek M., Szewczyk K.W., 2008. Effects of perfluorinated oxygen carrier application in yeast, fungi and plant cell suspension cultures. Biochem. Eng. J., 41, 38-42. DOI: 10.1016/j.bej.2008.03.004.[Crossref]
  • Pilarek M., Brand E., Hillig F., Krause M., Neubauer P., 2013a. Enhanced plasmid production in miniaturized high-cell-density cultures of Escherichia coli supported with perfluorinated oxygen carrier. Bioprocess Biosyst. Eng., 36, 1079-1086. DOI 10.1007/s00449-012-0861-7.[Crossref]
  • Pilarek M., Dębowska J., Szewczyk K.W., 2009. Hodowla komórek Nicotiana tabacum BY-2 w bioreaktorze membranowym z wykorzystaniem perfluorowanego nośnika tlenu. Inż. Ap. Chem., 48, 85-86.
  • Pilarek M., Glazyrina J., Neubauer P., 2011. Enhanced growth and recombinant protein production of Escherichia coli by a perfluorinated oxygen carrier in miniaturized fed-batch cultures. Microb. Cell Fact., 10, 50. DOI: 10.1186 /1475-2859-10-50.[PubMed][Crossref]
  • Pilarek M., Grabowska I., 2012. Growth of animal cells on flexible interface of liquid fluorocarbon. Eng. Biomater., 114, 12-14.
  • Pilarek M., Grabowska I., Ciemerych M.A., Dąbkowska K., Szewczyk K.W., 2013b. Morphology and growth of mammalian cells in a liquid/liquid culture system supported with oxygenated perfluorodecalin. Biotechnol. Lett., 35, 1387-1394. DOI 10.1007/s10529-013-1218-2.[Crossref]
  • Pilarek M., Grabowska I., Senderek I., Wojasiński M., Janicka J., Janczyk-Ilach K., Ciach T., 2014. Liquid perfluorochemical-supported hybrid cell culture system for proliferation of chondrocytes on fibrous polylactide scaffolds. Bioprocess Biosyst. Eng., DOI: 10.1007/s00449-014-1143-3.[Crossref]
  • Pilarek M., Zygmuntowicz J., Dąbkowska K., Moniuk W., 2013c. Wykorzystanie metody enzymatycznej do badania rozpuszczalności tlenu w ciekłych perfluorowiązkach. Inż. Ap. Chem., 52, 467-468.
  • Pilarek M., Szewczyk K.W., Stępniewski J., Anderszewska A., 2006. Zastosowanie perfluorowanego nośnika tlenu w hodowlach mikroorganizmów. Przemysł Chemiczny, 85, 1131-1133. PL Patent P-404726, 16.07.2013. Application of perfluorochemicals for plant metabolites in situ extraction.
  • Pohorecki R., Bałdyga J., Ryszczuk A., Motyl T., 2001. Erythrocyte destruction during turbulent mixing. Biochem. Eng. J., 9, 147-154. DOI: 10.1016/S1369-703X(01)00135-8.[Crossref]
  • Pohorecki R., Moniuk W., 1988. Kinetics of reaction between carbon dioxide and hydroxyl ions in aqueous electrolyte solutions. Chem. Eng. Sci., 43, 1677-1684. DOI: 10.1016/0009-2509(88)85159-5.[Crossref]
  • Radisic M., Park H., Chen F., Salazar-Lazzaro J.E., Wang Y., Dennis R., Langer R., Freed L.E., Vunjak- Novakovic G., 2006. Biomimetic approach to cardiac tissue engineering: oxygen carriers and channeled scaffolds. Tissue Eng., 12, 2077-2091. DOI: 10.1098/rstb.2007.2121.[PubMed][Crossref]
  • Randsoe T., Hyldegaard O., 2009. Effect of oxygen breathing and perfluorocarbon emulsion treatment on air bubbles in adipose tissue during decompression sickness. J. Appl. Physiol., 107, 1857-1863. DOI: 10.1152/japplphysiol.00785.2009.[Crossref]
  • Rappaport C., Trujillo E.M., Soong L.-F., 1996. Novel oxygenation system supports multilayer growth of HeLa cells. BioTechniques, 21, 672-677.[PubMed]
  • Rappaport C., Rensch Y., Abbasi M. , Kempe M., Rocaboy C., Gładysz J., Trujillo E.M., 2002. New perfluorocarbon system for multilayer growth of anchorage-dependent mammalian cells. BioTechniques, 32, 142-151.[PubMed]
  • Rappaport C., 2003. Progress in concept and practice of growing anchorage-dependent mammalian cells in three dimension. In Vitro Cell. Dev. Biol. Anim., 39, 187-192. DOI: 10.1290/1543-706X(2003)039<0187:RICAPO>2.0.CO;2.[Crossref]
  • Rémy B., Deby-Dupont G., D’Ans V., Ernest P., Lamy M., 1999. Substituts des globules rouges: emulsions de fluorocarbures et solutions d’hemoglobine. Ann. Fr. Anesth. Reanim., 18, 211-224. DOI: 10.1016/S0750-7658(99)90155-7.[Crossref]
  • Richardson G.F., Gardiner Y.T., McNiven M.A., 2002. Preservation of rainbow trout (Oncorhynchus mykiss) eyed eggs using a perfluorochemical as an oxygen carrier. Theriogenology, 58, 1283-1290. DOI: 10.1016/S0093-691X(02)00955-X.[Crossref]
  • Riess J.G., 2001. Oxygen carriers (“blood substitutes”) - raison d’etre, chemistry and some physiology. Chem. Rev., 101, 2797-2919. DOI: 10.1021/cr970143c.[Crossref]
  • Riess J.G., 2002a. Fluorous micro- and nanophases with biomedical perspective. Tetrahedron, 58, 4113-4131. DOI: 10.1016/S0040-4020(02)00262-4.[Crossref]
  • Riess J.G., 2002b. Blood substitutes and other potential biomedical applications of fluorinated colloids. J. Fluor. Chem., 114, 119-126. DOI: 10.1016/S0022-1139(02)00017-9.[Crossref]
  • Riess J.G., 2005. Understanding the fundamentals of perfluorocarbons and perfluorocarbon emulsions relevant to in vivo oxygen delivery. Artif. Cells Blood Substit. Immobil. Biotechnol., 33, 47-63. DOI: 10.1081/BIO-200046659.[Crossref]
  • Riess J.G., 2006a. Perfluorocarbon-based oxygen delivery. Artif. Cells Blood Substit. Immobil. Biotechnol., 34, 567-80. DOI: 10.1080/10731190600973824.[Crossref]
  • Riess J.G., 2006b. Fluorous materials for biomedical uses, In: Gladysz J. A., Curran D. P., Horvath I. (Eds.), Handbook of fluorous chemistry. Wiley-VCH, 521-561. DOI: 10.1002/3527603905.ch13.[Crossref]
  • Riess J.G., Krafft M.P., 2006. Fluorocarbon emulsions as in vivo oxygen delivery systems: Background and chemistry, In: Winslow R.M. (Eds.), Blood Substitutes. Elsevier Academic Press, 259-275. DOI: 10.1016/B978-012759760-7/50000-7.[Crossref]
  • Rols J.L., Condoret J.S., Fonade C., Goma G., 1990. Mechanism of enhanced oxygen transfer in fermentation using emulsified oxygen-vectors. Biotechnol. Bioeng., 35, 427-435. DOI: 10.1002/bit.260350410.[Crossref][PubMed]
  • Ruiz-Cabello J., Barnett B.P., Bottomley P.A., Bulte J.W.M., 2011. Fluorine (19F) MRS and MRI in biomedicine. NMR Biomed., 24, 114-129. DOI:10.1002/nbm.1570.[Crossref]
  • Ruland O., Spiegel H.U., Hauss J., Schönleben K., 1987. Oxypherol - a new way to preserve organs?, In: Ehrly A.M., Hauss J., Huch R. (Eds.), Clinical oxygen pressure measurement. Tissue oxygen pressure and transcutaneous oxygen pressure. Springer Verlag, Berlin Heidelberg. DOI: 10.1007/978-3-642-71226-5_30.[Crossref]
  • Sandford G., 2003. Perfluoroalkanes. Tetrahedron, 59, 437-454. DOI: 10.1016/S0040-4020(02)01568-5.[Crossref]
  • Shi Y., Sardonini C.A., Goffe R.A., 1998. The use of oxygen carriers for increasing the production of monoclonal antibodies from hollow fibre bioreactors. Res. Immunol., 149, 576-587. DOI: 10.1016/S0923-2494(98)80009-6.[Crossref]
  • Shiba Y., Ohshima T., Sato M., 1998. Growth and morphology of anchorage-dependent animal cells in a liquid/liquid interface system. Biotechnol. Bioeng., 57, 583-589. DOI: 10.1002/(SICI)1097-0290(19980305)57:5<583::AID-BIT10>3.0.CO;2-D.[Crossref]
  • Shine K.P., Gohar L.K., Hurley M.D., Marston G., Martin D., Simmonds P.G., Wallington T.J., Watkins M., 2005. Perfluorodecalin: Global warming potential and first detection in the atmosphere. Atmos. Environ., 39, 1759-1763. DOI: 10.1016/j.atmosenv.2005.01.001.[Crossref]
  • da Silva T.L., Calado V., Silva N., Mendes R.L., Alves S.S., Vasconcelos J.M.T., Reis A., 2006. Effects of hydrocarbon additions on gas-liquid mass transfer coefficients in biphasic bioreactors. Biotechnol. Bioprocess Eng., 11, 245-250. DOI: 10.1007/BF02932038.[Crossref]
  • Smoła M., Vandamme T., Sokołowski A., 2008. Nanocarriers as pulmonary drug delivery systems to treat and to diagnose respiratory and non respiratory diseases. Int. J. Nanomedicine, 3, 1-19. DOI: 10.2147/IJN.S1045.[Crossref][PubMed]
  • Sobieszuk P., Pilarek M., 2012. Absorption of CO2 into perfluorinated gas carrier in the Taylor gas-liquid flow in a microchannel system. Chem. Process Eng., 33, 595-602. DOI: 12.2478/v10176-012-0049-3.
  • Spiess B.D., 2009. Perfluorocarbon emulsions as a promising technology: a review of tissue and vascular gas dynamics. J. Appl. Physiol., 106, 1444-1452. DOI: 10.1152/japplphysiol.90995.2008.[Crossref]
  • Suresh S., Srivastava V.C., Mishra I.M., 2009. Techniques for oxygen transfer measurement in bioreactors: A review. J. Chem. Technol. Biotechnol., 84, 1091-1103. DOI: 10.1002/jctb.2154.[Crossref]
  • Sykłowska-Baranek K., Pilarek M., Cichosz M., Pietrosiuk A., 2014. Liquid perfluorodecalin application for in situ extraction and enhanced naphthoquinones production in Arnebia euchroma cell suspension cultures. Appl. Biochem. Biotechnol., 172, 2618-2627. DOI 10.1007/s12010-013-0701-5.[Crossref]
  • Tawfic Q.A., Kausalya R., 2011. Liquid ventilation. Oman Med. J., 26, 4-9. DOI: 10.5001/omj.2011.02.[PubMed][Crossref]
  • Terai S., Tsujimura T., Li S., Hori Y., Toyama H., Shinzeki M., Matsumoto I., Kuroda Y., Ku Y., 2010. Effect of oxygenated perfluorocarbon on isolated islets during transportation. J. Surg. Res., 162, 284-289. DOI: 10.1016/j.jss.2009.03.082.[Crossref]
  • Turick C.E., Bulmer D.K., Enhanced reduction of nitrous oxide by Pseudomonas denitrificans with perfluorocarbons. Biotechnol. Lett., 20, 123-125. DOI: 10.1023/A:1005364121431.[Crossref]
  • US Patent 4105798, 08.08.1978. Perfluoro polycyclic compounds for use as synthetic blood and perfusion media.
  • US Patent 5463082, 31.10.1995. Fluorous multiphase systems.
  • US Patent 5531219, 02.07.1996. Use of liquid fluorocarbons to facilitate pulmonary drug delivery.
  • US Patent 5702949, 30.12.1997. Culture method for multilayer growth of anchorage-dependent cells.
  • US Patent 6897331, 24.05.2005. Fluorous triphase and other multiphase systems.
  • US Patent 7404943, 29.07.2008. Methods for solubilizing and recovering fluorinated compounds.
  • US Patent 20060278224, 22.03.2011. Process for transient and steady state delivery of biological agents to the lung via breathable liquids.
  • Vasquez D.M., Ortiz D., Alvarez O.A., Briceno J.C., Cabrales P., 2013. Hemorheological implications of perfluorocarbon based oxygen carrier interaction with colloid plasma expanders and blood. Biotechnol. Prog., 29, 796-807. DOI: 10.1002/btpr.1724.[Crossref][PubMed]
  • Wardrop J., Lowe K.C., Power J.B., Davey M.R., 1996. Perfluorochemicals and plant biotechnology: an improved protocol for protoplast culture and plant regeneration in rice (Oryza sativa L.). J. Biotechnol., 50, 47-54. DOI: 10.1016/0168-1656(96)01548-9.[Crossref]
  • Wasanasathian A., Peng C.A., 2001. Enhancement of microalgal growth by using perfluorocarbon as oxygen carrier. Artif. Cells Blood Substit. Immobil. Biotechnol., 29, 47-55. DOI: 10.1081/BIO-100001255.[Crossref]
  • Wesseler E.P., Iltis R., Clark L.C., 1977. The solubility of oxygen in highly fluorinated liquids. J. Fluorine Chem., 9, 137-146. DOI: 10.1016/S0022-1139(00)82152-1.[Crossref]
  • Wijekoon A., Fountas-Davis N., Leipzig N.D., 2013. Fluorinated methacrylamide chitosan hydrogel systems as adaptable oxygen carriers for wound healing. Acta Biomater., 9, 5653-5664. DOI: 10.1016/j.actbio.2012.10.034.[Crossref][PubMed]
  • Yacoub A., Hajec M.C., Stanger R., Wan W., Young H., Mathern B.E., 2014. Neuroprotective effects of perflurocarbon (oxycyte) after contusive spinal cord injury. J. Neurotrauma, 31, 256-267. DOI: 10.1089/neu.2013.3037.[Crossref]
  • Yue J., Chen G., Yuan Q., Luo L., Gonthier Y., 2007. Hydrodynamics and mass transfer characteristics in gasliquid flow through a rectangular microchannel. Chem. Eng. Sci., 62, 2096-2108. DOI: 10.1016/j.ces.2006.12.057.[Crossref]
  • Zetterlund P.B., Kagawa Y., Okubo M., 2008. Controlled/living radical polymerization in dispersed systems. Chem. Rev., 108, 3747-3794. DOI: 10.1021/cr800242x.[PubMed][Crossref]
  • Zhu M.M., Goyal A., Rank D.L., Gupta S.K., Vanden Boom T., Lee S.S., 2005. Effects of elevated pCO2 and osmolarity on growth of CHO cells and production of antibody-fusion protein B1: A case study. Biotechnol. Prog., 21, 70-77. DOI: 10.1021/bp049815s. [Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_cpe-2014-0035
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.